
A model predictive controller for quadrocopter state interception

Mark W. Mueller and Raffaello D’Andrea

Abstract— This paper presents a method for generating
quadrocopter trajectories in real time, from some initial state
to a final state defined by position, velocity and acceleration in
a specified amount of time. The end state captures the attitude
to within a rotation about the thrust axis. Trajectory generation
is done by formulating the trajectory of the quadrocopter in its
jerk, in discrete time, and then solving a convex optimisation
problem on each decoupled axis. Convex bounds are derived to
include feasibility constraints with respect to the quadrocopter’s
total allowable thrust and angular rates.

I. INTRODUCTION

Quadrocopters are an active area of research, owing to
their agility, mechanical simplicity and robustness. They are
capable of diverse tasks, and have been used as platforms to
study vision-based pose estimation [1], nonlinear control [2],
and learning [3], for example. Furthermore, they are useful as
tools for solving practical problems such as surveillance [4]
and inspection [5].

Various trajectory generation strategies have been pro-
posed, depending on the goal to be achieved. Trajectory
generation is complicated by the underactuated and nonlinear
nature of the quadrocopter dynamics, and by difficult-to-
model aerodynamics (see, e.g. [6], [7] for discussions on
aerodynamic effects and [3] for a learning-based compensa-
tion strategy).

In [8] a strategy for generating state interception trajecto-
ries is presented, where the trajectory is broken down into
a sequence of five phases, each part of which is assigned a
different controller. These phases consist of: precise hover;
3D path following; attitude control to desired attitude; atti-
tude recovery to zero angles; and finally, soft hover control
for recovery.

The strategy presented in [9] involves exploiting the
differential flatness of the quadrocopter dynamics, and is
used to generate trajectories between so-called “keyframes”,
which are defined as positions in space and yaw angles.
The generated trajectories then pass through keyframes at
specified times, while minimizing the snap (fourth derivative
of position) squared. These trajectories are solved using
either a normalised time, or distance, and are then scaled
to the problem at hand.

Pontryagin’s minimum principle is exploited in [10]
and [11] to generate: 1) bang-singular to-rest quadrocopter
trajectories, and 2) bang-singular position interception tra-
jectories, where the goal is to reach a given position at a
given time, while minimizing the time required to stop after

The authors are with the Institute for Dynamic Systems and Control,
ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
{mullerm, rdandrea}@ethz.ch

the intercept. These methods are computationally fast, with
solution times on the order of microseconds.

The differential flatness of the quadrocopter dynamics
was also exploited in [2] to generate trajectories, where the
authors make the simplification that the roll-pitch-yaw Euler
angle accelerations are control inputs. The optimisation is
done on a weighted sum of the fuel cost (approximated
as average speed) and deviation from desired arrival time.
Trajectories are then solved for by choosing accelerations as
polynomials in time, with the degree of the polynomial being
a function of the number of boundary conditions, and then
solving for the polynomial coefficients.

In [12] collision-free trajectories are generated to guide a
fleet of UAVs from initial states to final states, guaranteeing
that the trajectories maintain a minimum distance whilst min-
imising the total thrust produced by the quadrocopters. The
solutions are found using sequential convex programming,
with solution times on the order of seconds.

A learning-based model predictive controller (MPC) is
presented in [13], with the Euler angles taken as inputs;
a cascaded MPC is designed for a quadrocopter in [14],
with the dynamics of the quadrocopter captured by piecewise
affine equations, separating control of the attitude and planar
motions; while MPC is combined with robust control in [15].
In each case, MPC is used to track a given state trajectory.

This paper builds on a previously presented scheme
for generating trajectories for generating trajectories for a
quadrocopter hitting a ball with an attached racket [16]. That
method required that the vehicle maintain small pitch and
roll angles, with the end state restricted to the position, one
component of the velocity, and the direction of the racket
normal.

Here, a scheme is presented for generating state inter-
ception trajectories for quadrocopters; that is, trajectories
starting from an arbitrary state and achieving a (reduced) end
state in a specified amount of time, whilst satisfying input
constraints. The desired end state is specified as the position,
velocity and acceleration of the vehicle, i.e. fixing the attitude
of the vehicle to within a rotation about the vehicle’s thrust
axis. The total thrust and body rates are bounded by convex
functions, allowing the problem to be written as a convex
constrained optimisation problem, which can be solved in
real time on a typical desktop computer, and which allows
the trajectory generator to be used as a diminishing horizon
model predictive controller.

This method extends the state of the art by calculating
state interception trajectories in real time, using sophisticated
optimisation techniques to explicitly include input constraints
in the trajectory generation problem.

2013 European Control Conference (ECC)
July 17-19, 2013, Zürich, Switzerland.

978-3-952-41734-8/©2013 EUCA 1383



The quadrocopter model is presented in Section II, with
the trajectory generation scheme given in Section III. Sec-
tion IV discusses implementation and experimental results,
and an outlook is given in Section V.

II. DYNAMIC MODEL

The quadrocopter is modelled as a rigid body with six
degrees of freedom: linear translation along the inertial x1,
x2 and x3 axes, and three degrees of freedom describing
the rotation of the frame attached to the body with respect
to the inertial frame, which is taken here to be the proper
orthogonal matrix R. The control inputs to the system are
taken as the total thrust produced f , for simplicity normalised
by the vehicle mass and thus having units of acceleration;
and the body rates expressed in the body-fixed frame as
ω = (ω1, ω2, ω3). These are illustrated in Fig. 1.

The mixing of these inputs to individual motor thrust
commands is done on board the vehicle, using feedback
from gyroscopes. It is assumed that the time constant of the
onboard controllers is low enough to have negligible influ-
ence on the algorithm presented here. Because of their low
rotational inertia, quadrocopters can achieve extremely high
rotational accelerations (on the order of 200 rad s−2 [10])
about the ω1 and ω2 axes, while it will be shown that the
rotation about ω3 is not needed for the trajectories considered
here. For example, [17] presents a scheme for mixing these
inputs to motor commands.

The differential equations governing the flight of the
quadrocopter are now taken as those of a rigid body [18]

ẍ = R e3f + g (1)

Ṙ = R Jω×K (2)

with e3 = (0, 0, 1) and Jω×K the skew-symmetric matrix
form of the vector cross product such that

Jω×K =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3)

and g = (0, 0,−g) the acceleration due to gravity. Note the
distinction between the vector g and scalar g.

A. Reformulation in jerk

We follow [10] in considering the trajectories of the
quadrocopter in terms of the jerk of the axes, allowing the

g

e3f

ω1

ω2

ω3

x3

x1 x2

Fig. 1. Dynamic model of a quadrocopter, acted upon by gravity g, a
thrust force f pointing along the (body-fixed) axis e3; and rotating with
angular rate ω = (ω1, ω2, ω3), with its position in inertial space given as
(x1, x2, x3).

system to be considered as a triple integrator in each axis
and simplifying the trajectory generation task.

It is assumed that a thrice differentiable trajectory x(t) is
available, where the jerk is written as j =

...
x = (

...
x1,

...
x2,

...
x3).

The input thrust f is then found by applying the Euclidean
norm ‖·‖ to (1),

f = ‖ẍ− g‖ . (4)

Squaring the above, taking the derivative and substituting
for (1) yields

2fḟ = 2 (ẍ− g)
T
j = 2 (Re3f)

T
j (5)

ḟ = eT3 R
T j. (6)

Taking the first derivative of (1) yields

j = RJω×Ke3f + Re3ḟ . (7)

After substitution, and evaluating the product Jω×Ke3, it can
be seen that the jerk j and thrust f values fix two components
of the body rates: ω2

−ω1

0

 =
1

f

1 0 0
0 1 0
0 0 0

RT j. (8)

That the third component of body rates, ω3, does not
appear can be understood by noting that a rotation about
the e3 axis does not affect the translational acceleration (1).

Using (4) and (8), the system inputs are given for a
trajectory described in its jerk, with one remaining degree
of freedom in ω3. This could be fully specified if the full
attitude of the quadrocopter were also known (specifically,
the rotation about the thrust axis). For simplicity, here it will
be assumed that ω3 = 0 and that this rotation is unimportant.

B. Feasibility constraints and decoupled axes

A quadrocopter trajectory described by (1) and (2) is
considered to be feasible if the thrust and the magnitude
of the body rates lie in some feasible set, defined as

0 < fmin ≤ f ≤ fmax (9)
‖ω‖ ≤ ωmax. (10)

Note that fmin > 0 for fixed-pitch propellers with a fixed
direction of rotation, and, specifically, that the requirement
on the thrust input is non-convex. These limits are translated
to limits on the jerk trajectory by squaring (4) and writing
it in its components:

f2
min ≤ ẍ2

1 + ẍ2
2 + (ẍ3 + g)2 ≤ f2

max. (11)

The following conservative box constraints are applied to
yield convex constraints:

ẍmin{1} = −ẍmax{1} ≤ ẍ1 ≤ ẍmax{1} (12)
ẍmin{2} = −ẍmax{2} ≤ ẍ2 ≤ ẍmax{2} (13)
ẍmin{3} = fmin − g ≤ ẍ3 ≤ ẍmax{3}. (14)

1384



Fig. 2. A cross-section of the feasible acceleration sets for a quadrocopter.
The lightly shaded, non-convex, doughnut defines the true thrust limits of
the vehicle, while the darker rectangular area defines the decoupled per-
axis acceleration limits used here. Note that the circle of radius fmax is
truncated in the graphic.

The resulting trajectories are guaranteed to be feasible with
respect to the thrust limit if

ẍ2
max{1} + ẍ2

max{2} +
(
ẍmax{3} + g

)2 ≤ f2
max (15)

as visualised for two axes in Fig. 2.
By taking the (induced) norm of (8), an upper bound for

the body rates can be found as a function of the jerk, as

‖ω‖ ≤ 1

f
‖j‖ ≤ 1

fmin
‖j‖ . (16)

Applying the limit (10) to the above, and rearranging
yields and upper bound on the allowable jerk per axis

jmax =
1√
3
fmin ωmax (17)

under the worst case that all three axes produce the maximum
allowable jerk jmax at the same time as the minimum thrust
fmin is achieved.

III. TRAJECTORY GENERATION

Considering the system input to be the three-dimensional
jerk, the quadrocopter dynamics become a set of three triple
integrators, one in each axis, with states position, velocity
and acceleration. The trajectory generation is rewritten as an
optimal control problem, with boundary conditions defined
by the quadrocopter’s initial and (desired) final states. The
cost function to minimize is chosen as

Jcoupled =

T∫
0

(
j1(t)2 + j2(t)2 + j3(t)2

)
dt. (18)

Note that, by rearranging (16), this cost function can be
interpreted as an upper bound for a product of the inputs,
since

f2 ‖ω‖2 ≤ j21 + j22 + j23 . (19)

This implies that the cost function (18) can be split, such
that each axis is minimized independently, while remaining
meaningful in the context of the coupled three-dimensional
trajectory.

A. Discrete time formulation

The trajectory generation problem for each decoupled axis
is rendered finite dimensional by discretizing the time with
uniform steps of size ∆t. Each axis is then a discrete time
linear, time invariant system in the state z, consisting of
position, velocity and acceleration, with scalar jerk input
j =

...
x , where the axis subscripts have been neglected for

convenience.

j[k] =
...
x(k∆t) (20)

z[k] =
[
x(k∆t) ẋ(k∆t) ẍ(k∆t)

]T
(21)

z[k + 1] = Adz[k] + Bdj[k] (22)

Ad =

1 ∆t 1
2∆t2

0 1 ∆t
0 0 1

 (23)

Bd =
[
1
6∆t3 1

2∆t2 ∆t
]T

(24)

The optimal control problem is to minimize the cost
function

J =

N∑
k=0

j[k]2 (25)

subject to the above dynamics, satisfying the boundary
conditions defined by the initial and final positions (x0 and
xf , respectively), velocities (ẋ0 and ẋf ) and accelerations
(ẍ0 and ẍf ):

z[0] =
[
x0 ẋ0 ẍ0

]T
(26)

z[N ] =
[
xf ẋf ẍf

]T
(27)

with the end stage calculated from the end time T as
N = Round(T/∆t).

The constraints on acceleration of (12) - (14) and the jerk
limit (17) are affine functions of the state z[k] and input j[k]
(where n is the axis under consideration):[

0 0 1
0 0 −1

]
z[k] ≤

[
ẍmin{n}
ẍmax{n}

]
(28)[

1
−1

]
j[k] ≤

[
jmax

−jmax

]
. (29)

The quadratic cost function (25) with the linear equality
constraints (22), (26) and (27), and the affine inequality
constraints of (28) and (29), together define a convex opti-
misation problem. This is a special case of model predictive
control [19] with a fixed end constraint, and with a dimin-
ishing rather than receding horizon (i.e. the trajectory is only
planned to intercept).

There exist efficient methods for solving problems of this
sort, with CVXGen [20], FORCES [21] and FiOrdOs [22]
presenting techniques for creating C-code based solvers for
specific instances of convex optimization problems.

Here, solvers are generated using the FORCES software of
[21], which was able to generate solvers for large problems
(here trajectories up to N = 200 are considered). FORCES
uses efficient interior point methods tailored to convex mul-
tistage problems, as are typical in model predictive control

1385



Fig. 3. Example one-dimensional constrained trajectory solution, starting
at rest at the origin and ending at xf = 1.25m, ẋf = ẍf = 0 in
T = 1 s, with acceleration limits ẍmax = − ẍmin = 7m s−2 and
jmax = 70m s−3. Each step represents 0.02 s.

applications, and allows for high-speed implementation with
good numerical stability properties [21].

The generated solvers either return a solution that solves
the problem to within some acceptable residuals, or returns
that no solution is found. In reality, failure to find a solution
can mean that:
• a solution exists, but the solver failed to find it due to

reaching an internal limit;
• no solution exists to the conservatively constrained

decoupled problem;
• no solution exists to the fully coupled nonlinearly

constrained problem.
An example trajectory is shown in Fig. 3, where a one-

dimensional trajectory is generated over a translation of
1.25 m from rest at the origin to rest in 1 s (or 50 steps at
50 Hz). The acceleration limits are set to ẍmax = −ẍmin =
7 m s−2 and the jerk limit to jmax = 70 m s−3. The minimum
and maximum acceleration limits, and the maximum jerk
limit, are active for portions of this trajectory.

B. Solution time

The statistical performance of the trajectory generator is
investigated by solving trajectories from rest, for interception
times varying from 0.2 to 4 s, in 20 ms intervals (i.e. 10 to
200 steps). For each trajectory length, 1000 end states are
chosen uniformly at random in the range xf ∈ [−3, 3] m,
ẋf ∈ [−2, 2] m s−1 and ẍf ∈ [−5, 5] m s−2, and applying the
constraints ẍmax = −ẍmin = 7 m s−2 and jmax = 70 m s−3.
The mean solution time over all 191000 trajectories was
1.5 ms, with a maximum of 13.7 ms.

These were calculated on a PC running Windows 7, with
an Intel Core i7-2620M CPU at 2.70 GHz, with 4 GB RAM.
The solver was compiled into a dynamically linked library
using the Intel C++ Composer XE Windows: 2011.8.278,
which was subsequently linked to an executable using Visual
Studio 2008. In each case the optimisations were set to
maximise speed.

C. Completeness

Because the generated solver does not check for feasibility,
it does not distinguish between infeasible trajectories and

Fig. 4. Performance of the constrained triple integrator trajectory solver,
with trajectories generated from rest to a uniformly distributed random final
state. The top plot shows a histogram of the solution times, using the data
for all trajectory lengths, while the middle plot shows the execution time
as a function of horizon length, and the bottom plot shows the fraction of
randomly generated endstates for which a trajectory could be found as a
function of horizon length. The reduction in mean solution time at T ≈ 1 s
can be explained by noting that, for shorter end times, almost all trajectories
failed to find a solution.

those that hit iteration limits of the solver. The frequency
of occurrence of these false negatives is investigated by
generating one-dimensional trajectories from rest to end
states of positions in the range [0, 3.5]m, speeds in the
range [0, 5]m s−1, and zero acceleration; with an end time
of 1 s (50 steps) and limits as in the example trajectory
above. The problem was also modelled in Yalmip [23],
and solved as a quadratic program, allowing the detection
of infeasible problems. Note that completeness here refers
only to the decoupled triple integrator, not the fully coupled
quadrocopter model; a discussion of the latter can be found
in [24].

The results are visualised in Fig. 5: of 10’000 end states
evaluated, 5278 were found to be feasible; of these feasible
end states, the proposed solver found 85.0%.

IV. VALIDATION

The Flying Machine Arena (FMA) at the ETH Zurich is
a platform for design and validation of autonomous aerial
systems, and consists of a large motion capture volume and
a fleet of quadrocopters. Commands for the three body rates

1386



Fig. 5. Completeness of the trajectory solver, showing whether a one-
dimensional trajectory was found from rest to a specified end state within 1 s
for 10’000 different end states. The middle grey area represents feasible end
states for which the solver hit an internal limit, and failed to find a trajectory.

and the collective thrust are sent at 50 Hz over a wireless
channel, and an onboard controller uses rate gyro mea-
surements to generate motor thrust commands. The motion
capture system is used to measure the position and attitude
of the quadrocopter, fused into a full state estimate to be
used for control.

The trajectory generator is implemented as a model pre-
dictive controller, solving a trajectory to intercept at each
time step from the vehicle’s current state, and applying the
first input to the system. If the trajectory generator fails,
the trajectory from the previous time step is followed using
a feedback controller. Since the axes are independent, the
constrained solution for each axis can be solved for in
parallel, implying that a worst-case run-time of 13.7 ms
(from the above statistical analysis) would still fit in the
20 ms control period.

The thrust and body rates are limited as below, where these
values have been observed to match the FMA vehicles well.

fmin = 5 m s−2 (30)

fmax = 20 m s−2 (31)

ωmax = 25 rad s−1 (32)

A. Easy trajectory

An “easy” trajectory is examined first, where the goal is to
translate 1 m in the x1 direction, starting at rest and ending
at rest. The upper thrust limit is divided amongst all axes
equally, and this trajectory is considered “easy” because the
planned trajectories at time 0 does not have any active input
constraints.

ẍmax{1} = ẍmax{2} = ẍmax{3} ≈ 7.31 m s−2 (33)

The resulting flight is shown in Fig. 6, specifically, the
system reached the end state to within state errors of 49 mm
in position, 0.10 m s−1 in velocity and 1.1 m s−2 in accel-
eration, while remaining inside the feasibility constraints.
The figure also shows that, although the initially planned
trajectory does not hit any input constraints, later replanning
results in trajectories that do have active constraints, due to
disturbances.

B. Hard trajectory

Next, a “hard” trajectory is considered, one which involves
active input constraints in each axis. As with the easy
trajectory, the upper thrust limit was split equally amongst
all axes. The quadrocopter starts at rest at the origin, with a
target end state characterised by

xf = (3,−3, 2) m, (34)

ẋf = (5, 0, 0) m s−1, (35)

ẍf = (0, 4.9, 0) m s−2; (36)

in a time of T = 1.5 s. These end constraints can be
interpreted as trying to pass through a window approximately
4.69 m away, with a speed of 5 m s−1 at an attitude at 30◦

from the horizontal with no vertical acceleration at the end.
A resulting trajectory is shown in Fig. 7, with the achieved

end state

xf = (2.89,−2.75, 1.89) m, (37)

ẋf = (4.65, 0.28, 0.44) m s−1, (38)

ẍf = (−0.49, 5.96, 0.78) m s−2; (39)

or a position error of 0.29 m, velocity error of 0.63 m s−1.
The direction of thrust at the end differs from the desired by
an angle of 3.6◦. The position error equates to approximately
6% of the total translation, and the velocity error to 13% of
the total velocity change. From approximately 0.6 s onwards,
no feasible trajectories can be found from the vehicle’s
current position, and the last valid trajectory is flown in
feedback. This is possible because the constraints used for
trajectory generation are conservative, especially as the true
feasible regions are non-convex.

The inputs applied during this trajectory are shown in
Fig. 8, where it can be seen that the inputs stay within
the thrust and body rate constraints. The individual axes
do briefly violate the acceleration constraints during the
period where no feasible trajectory could be found from the
current position (therefore the vehicle was flying on feedback
with the last valid trajectory as reference). The conservative
nature of the body rate limits of (17) can be also seen: the
commanded body rates are generally very low, rising only
under trajectory following feedback control near intercept.

C. Box constraint selection

If additional information on the trajectory is available in
advance, or sufficient planning time is available, the convex
bounds on the accelerations and jerk can be chosen more
efficiently (refer to Fig. 2). Similarly, if the trajectory is
solved for off line, the bounds can be iterated on to make
use of them more efficiently.

As an example, consider a rest-to-rest motion, translating
4 m along the x1 axis. Using the general limits as above,
the fastest end time for which a feasible trajectory is found
is 1.60 s. However, because the motion is only along one
axis, the box constraints on the acceleration of the other two
axes can be tightened. Specifically, limiting the accelerations
in the x2 and x3 axes to ±1 m s−2 (to maintain the ability

1387



Fig. 6. Resulting flight for the “easy” trajectory; refer to Section IV-A, where the goal is a rest-to-rest translation of 1m in x1. The plot shows the
trajectory for each axis (from left to right: x1, x2 and x3) separately. The solid line shows the actual flown trajectory, and the dashed lines indicate the
planned acceleration trajectories, as replanned at each stage. Note that, from approximately 0.8s onwards, feasible trajectories can no longer be found and
the vehicle flies in feedback on the last valid trajectory.

Fig. 7. Resulting trajectories for the “hard” trajectory of Section IV-B: a quadrocopter starting at rest at the origin, and flying to an end state of
xf = (3,−3, 2)m, ẋf = (5, 0, 0)m s−1 and ẍf = (0, 4.9, 0)m s−2 in T = 1.5 s. Each plot shows the trajectory along a different axis in inertial
space. The thick lines represent the actual trajectory as followed by the quadrocopter, while the thin broken line is the solution to the trajectory generation
problem as obtained at the first time instant. Up to approximately 0.6 s, a new trajectory is generated at each time step (not shown), but from then onwards
feasible trajectories can no longer be found and feedback is done using the last valid trajectory as reference. Refer to Fig. 8 for the corresponding inputs.

to compensate for disturbances), the limits for x1 can be
raised to ±16.80 m s−2. Furthermore, the minimum thrust
value can be raised to 8.81 m s−2, allowing the jerk limit
to be raised to 127.16 m s−3 by (17). Using these limits,
the trajectory generator finds a solution for an end time of
1.24 s, an improvement of 22.5%. Note that these bounds are
still conservative, due to the non-convex nature of the true
feasible region.

Fig. 8. Inputs for the hard trajectory of Section IV-B. Note that the thrust
limits are hit, but the magnitude of the body rate command stays well below
the maximum allowed. This due to the conservative nature of the limit (17).

V. OUTLOOK

This paper presents a method for calculating state inter-
ception trajectories for quadrocopters, from arbitrary initial
conditions to a desired end state characterised by a position,
velocity and acceleration, resulting in commands of thrust
and two components of the body rates. The end acceleration
constraint can be viewed as defining the attitude of the
vehicle to within a rotation about the thrust axis. A possible
extension to this research would be calculating an input
trajectory for the third component of the body rates, such
that the final degree of freedom of the attitude can also be
specified.

The constrained trajectory generation problem is posed
as a convex optimisation problem for each decoupled axis,
which can be solved in real time. Therefore this technique is
suitable for use in feedback as a model predictive controller;
it also naturally handles cases where the desired end state
evolves over time, such as when trying to hit an uncertain
target where the target prediction evolves in real time.

The convex optimisation problem could be easily modified
to achieve different goals, e.g. by removing the equality
constraint on end velocity and acceleration, and adding the
magnitude of the end velocity to the cost function, one solves
a problem somewhat similar to that of [11].

1388



Given some initial and final states, it would also be very
useful to have an analytical method of calculating what the
minimum required time horizon is. One possible solution
would be to calculate the bang-bang trajectories as in [10].

The conservative nature of the jerk bounds means that
only a fraction of the allowable body rates is typically
used. Further work could be done to improve these bounds,
e.g. using the unconstrained solution to find a better bound
for the lowest thrust value produced along the trajectory.
Alternatively, the optimisation problems could be solved in
series and using the acceleration values from one solution to
provide tighter (time varying) bounds for the next axis.

By combining all three axes into one optimisation problem
that would now have 12 primary optimisation variables per
stage, the constraints could be made even less conservative.
The maximum thrust constraint (the right-hand side of (11))
can be encoded directly, noting that this is a convex quadratic
constraint, which can also be solved efficiently. This would
also allow rewriting the box constraint on jerk, (17), as
a norm constraint, making it somewhat less conservative.
Furthermore, by combining all axes in the optimisation
problem, it becomes straight forward to define e.g. zones
where the quadrocopter is allowed to fly (using the decoupled
axes presented here, only zones aligned with the axes could
be used). This has the major drawback of having to solve one
large optimisation problem, instead of three small problems.

The problem can be made much less restrictive by al-
lowing the end state to lie in a region “near” the desired
end state, rather than equalling exactly the desired end state.
The choice of the size of this region now becomes a design
variable, and will depend on the application.

ACKNOWLEDGEMENT
The Flying Machine Arena is the result of

contributions of many people, a full list of which
can be found at http://www.idsc.ethz.ch/
Research DAndrea/FMA/participants.
Specifically, we would like to thank Markus Hehn for
the many discussions on optimal control and quadrocopter
dynamics. We would also like to thank Alex Domahidi
and Stephan Richter for their discussions on convex
optimisation.

This research was supported by the Swiss National Science
Foundation through grant agreement number 138112.

REFERENCES

[1] S. Weiss, M. Achtelik, M. Chli, and R. Siegwart, “Versatile distributed
pose estimation and sensor self-calibration for an autonomous MAV,”
in IEEE International Conference on Robotics and Automation, 2012,
pp. 31–38.

[2] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke,
“A prototype of an autonomous controller for a quadrotor UAV,” in
Proceedings of the European Control Conference, Kos, Greece, 2007,
pp. 1–8.

[3] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple
learning strategy for high-speed quadrocopter multi-flips,” in IEEE
International Conference on Robotics and Automation, 2010, pp. 1642
–1648.

[4] K. Alexis, G. Nikolakopoulos, A. Tzes, and L. Dritsas, “Coordination
of helicopter UAVs for aerial forest-fire surveillance,” in Applications
of Intelligent Control to Engineering Systems, 2009, vol. 39, pp. 169–
193.

[5] N. E. Serrano, “Autonomous quadrotor unmanned aerial vehicle for
culvert inspection,” Ph.D. dissertation, Massachusetts institute of tech-
nology, 2011.

[6] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin,
“Quadrotor helicopter flight dynamics and control: Theory and ex-
periment,” in Proc. of the AIAA Guidance, Navigation, and Control
Conference, 2007, pp. 1–20.

[7] P. Martin and E. Salaün, “The true role of accelerometer feedback in
quadrotor control,” in IEEE International Conference on Robotics and
Automation, 2010, pp. 1623–1629.

[8] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers with quadrotors,” in
International Symposium on Experimental Robotics, 2010, pp. 664–
674.

[9] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in International Conference on Robotics and
Automation, 2011, pp. 2520–2525.

[10] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and
control,” in IFAC World Congress, vol. 18, no. 1, 2011, pp. 1485–1491.

[11] M. Hehn and R. D. Andrea, “Real-time trajectory generation for in-
terception maneuvers with quadrocopters,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Villamoura, Portugal,
2012, pp. 4979–4984.

[12] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: a sequential convex
programming approach,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Villamoura, Portugal, 2012, pp. 1917–
1922.

[13] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model
predictive control on a quadrotor: Onboard implementation and
experimental results,” in IEEE International Conference on Robotics
and Automation, 2012, pp. 279–284.

[14] K. Alexis, C. Papachristos, G. Nikolakopoulos, and A. Tzes, “Model
predictive quadrotor indoor position control,” in Mediterranean
Conference on Control & Automation, 2011, pp. 1247–1252.

[15] G. V. Raffo, M. G. Ortega, and F. R. Rubio, “MPC with nonlinear
H∞ control for path tracking of a quad-rotor helicopter,” in IFAC
World Congress, 2008, pp. 8564–8569.

[16] M. W. Muller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball
juggling,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2011, pp. 5113–5120.

[17] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Design and control
of an indoor micro quadrotor,” in IEEE International Conference on
Robotics and Automation, 2004, pp. 4393–4398.

[18] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics
Second Edition. AIAA, 2007.

[19] M. Morari and J. H. Lee, “Model predictive control: past, present and
future,” Computers and chemical engineering, vol. 23, no. 4-5, pp.
667–682, 1999.

[20] J. Mattingley and S. Boyd, “CVXGen: a code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1,
pp. 1–27, 2012.

[21] A. Domahidi, A. Zgraggen, M. Zeilinger, M. Morari, and C. Jones,
“Efficient interior point methods for multistage horizons arising in
receding horizon control,” in Proceedings of the 51st IEEE Conference
on Decision and Control, 2012, pp. 668–674.

[22] F. Ullman, “A Matlab toolbox for C-code generation for first order
methods,” Master’s thesis, ETH Zurich, Zurich, Switzerland, 2011.

[23] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in
MATLAB,” in IEEE International Symposium on Computer Aided
Control Systems Design, September 2004, pp. 284 –289.

[24] M. Hehn, R. Ritz, and R. DAndrea, “Performance benchmarking of
quadrotor systems using time-optimal control,” Autonomous Robots,
vol. 33, pp. 69–88, 2012.

1389


