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Abstract— This paper presents the “monospinner”: a me-
chanically simple flying vehicle with only one moving part. The
vehicle is shown to be controllable in three translational degrees
of freedom and two rotational degrees of freedom. The vehicle
has a single scalar control input, the thrust magnitude, and is
controlled by a cascaded control strategy with an inner attitude
controller and an outer position controller. The vehicle design is
chosen based on two robustness metrics: the ability to maintain
hover under perturbations and the probability of input satu-
ration based on a stochastic model. The resulting mechanical
and control designs are experimentally demonstrated, where it
is also shown that the vehicle is sufficiently robust to achieve
hover after being thrown into the air.

I. INTRODUCTION

Highly underactuated flying vehicles present an interesting
area of research, especially with respect to their control. The
first category is the samara-type vehicle, which can be traced
back to the 1950’s [1]. They often have two actuators and
are controllable in three translational degrees of freedom.
Inspired by the maple seed (or samaras), the whole body
resembles the look of the samara and rotates while flying.
They are passively stable in attitude [2] and thus require no
active attitude control to hover. The propulsion for the body
rotation typically comes from a small propeller installed at
one end of the body. Position control is achieved by varying
the angle of the servo-driven control surface, similar to an
aileron. Notable references are [3], [4], [5].

The second category is the passively stable vehicle with
a single propeller. They have one actuator and no control
surfaces. They are controllable in height, but not in the
horizontal plane. They are also passively stable in attitude
and capable of hovering flight without active attitude control.
One such vehicle [6] has a single propeller producing thrust
in the upright direction and is mounted with an aerodynamic
damper. Similar vehicles exist as toys, for example the Air
Hogs Vectron [7].

The third category is the flapping-wing flying vehicle.
Those with one actuator use aerodynamic dampers to have
passive stability in attitude and are only controllable in
height [8], [9]. If they have two actuators (e.g. two wings
are separately actuated), they may be controllable in the
horizontal direction [10].

The fourth category is the ducted fan vehicle, having for
example one rotating propeller. Such a vehicle is controllable
in three translational degrees of freedom by having control
authority over several control surfaces [11].
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Multicopters (whose only inputs are fixed-pitch propellers
with parallel axes of rotation) form the fifth category, with
quadrocopters being the most popular. In [13], [14] it is
shown that a quadrocopter can maintain flight despite the
complete loss of two propellers (that is, with only two
propellers remaining). It is also shown, theoretically, that
control is possible after the complete loss of three pro-
pellers, however experimental validation was not done due
to practical difficulties. This paper builds on these results,
and presents a mechanically simple flying vehicle (called
the “monospinner”, and shown in Fig. 1) with only one
moving part (the rotating propeller). The vehicle features no
additional actuators or aerodynamic surfaces. This vehicle
is controllable in three translational degrees of freedom and
two attitude degrees of freedom.

This paper is organized as follows: Section II presents the
dynamic modelling and hover solution of the monospinner.
Section III then outlines the control strategy, while Section
IV describes the design procedure. Section V presents the
resulting vehicle. Section VI shows the experimental results,
and the paper concludes in Section VII.

II. MODELLING

This section presents the translational and rotational dy-
namics, followed by the hover solution of the vehicle.

A. Dynamic model

This model is adapted from [14] and specialized here for
the monospinner. Fig. 2 shows some of the salient forces and

Fig. 1. The monospinner: a controllable flying vehicle with a single
moving part. The vehicle is approximately 40 cm in size, the frame consists
of five carbon-fiber plates, and the electronics are mounted in an aluminium
cage inspired by the AscTec Hummingbird [12]. The carbon fiber rods help
to protect the propeller during landing. A more detailed list of components
is given in Table I.
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Fig. 2. Monospinner in flight, showing some of the symbols and quantities
required to model the system.

quantities used in this section. The vehicle has a total mass
m, and the gravity vector is denoted as g. Boldface symbols
like g are used throughout the paper to denote quantities in
three-dimensional space. The propeller on the vehicle has
only one degree of freedom (its rotation), and it produces
a thrust force of magnitude fP in the direction of the unit
vector eP . The position of the vehicle’s center of mass with
respect to a point fixed in the inertial coordinate system is
denoted as p.

Two coordinate systems are used for the modelling: an
inertial (ground-fixed) coordinate system E and a body-
fixed coordinate system B. A vector expressed in a specific
coordinate system is indicated by a superscript, for example
gE expresses g in coordinate system E. The coordinate
system B is oriented such that the motor arm points in
the direction (1, 0, 0) from the center of mass and eBP =
(0, 0, 1). The notation (0, 0, 1) is used throughout this paper
to compactly express the elements of a column vector.

The translational dynamics of the vehicle, expressed in the
inertial system E, are captured by Newton’s law:

mp̈E = eEP fP +mgE (1)

where it is assumed that the vehicle travels at low transla-
tional velocities, such that translational drag forces (such as
those described in [15]) are neglected.

The mass moment of inertia of the vehicle excluding the
propeller (with respect to the vehicle’s center of mass) is
IB , and that of the propeller is IP . The vehicle rotates at an
angular velocity ωBE with respect to the coordinate system
E, where the subscript BE means the relative velocity of
coordinate system B with respect to E. The propeller is
located at a displacement rP with respect to the center of
mass, and its angular velocity with respect to the coordinate
system E is denoted as ωPE . Besides the thrust fP , the
propeller also produces a reaction torque of magnitude τP
in the propeller thrust direction eP . The vehicle experiences
an airframe drag torque τ d due to the rotation of the vehicle
in the air.

Using Euler’s law, the attitude dynamics expressed in the

body-fixed coordinate system B are formulated as:

IBBω̇
B
BE + IBP ω̇

B
PE + JωBBE×K(IBBω

B
BE + IBPω

B
PE) =

JrBP×KeBP fP + eBP τP + τBd (2)

where Ja×K represents the skew-symmetric matrix form of
the cross product, so that Ja×Kb = a×b for any 3D vectors
a and b.

The propeller’s scalar speed Ω with respect to the body is
usually controlled by an electronic speed controller, so that

ωBPB = (0, 0,Ω). (3)

Note that ωBPE can be decomposed as below:

ωBPE = ωBPB + ωBBE . (4)

The thrust fP and the torque τP produced from a station-
ary propeller are assumed to be proportional to its angular
velocity ωBPE squared with the proportional coefficients κf
and κτ , respectively [16]:

fP = κf (ωBPE · eBP )|ωBPE · eBP | (5)

τP = −κτ (ωBPE · eBP )|ωBPE · eBP | (6)

with · denoting the vector inner product. Note that by
substituting (3) into (4) and the resulting equation into (5)
and (6), fP and τP are uniquely defined by Ω and ωBBE .

It is assumed that the magnitude of the airframe drag
torque τ d is quadratic in the vehicle’s angular velocity ωBBE
[14]:

τBd = −
∥∥ωBBE∥∥KB

d ω
B
BE (7)

where ‖·‖ denotes the Euclidean norm and KB
d is assumed

to be a diagonal 3 × 3 matrix in the coordinate system B,
which is denoted by

KB
d = diag (Kd,xx,Kd,yy,Kd,zz) . (8)

B. Hover solution

The hover solution of the monospinner follows the defini-
tion of the “relaxed hover solutions” [14], which are defined
as solutions that are constant when expressed in a body-fixed
reference frame and where the vehicle remains substantially
in one position. Specifically, these solutions allow the vehicle
to have a non-zero angular velocity.

In hover, the monospinner’s center of mass has a uniform
circular motion at a constant height, while the vehicle body
is rotating at a constant angular velocity ω̄BBE in the parallel
direction of gravity. Note that the overbar in this paper is
always used to denote quantities that are constant in hover
(i.e. the equilibrium solution). Although the vehicle’s attitude
is constantly changing due to the non-zero angular velocity,
there exists a body-fixed unit vector n, which does not
change when expressed in the coordinate system E. This
vector may be thought as an averaged thrust direction of the
vehicle – note that the instantaneous thrust direction may not
be aligned with gravity.

The dynamics of a vector l expressed in two different
coordinate systems are described as [17]

l̇
B

= −JωBBE×KlB +CBE l̇
E

(9)
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Fig. 3. Cascaded control structure: the outer position controller defines a
desired acceleration, where the inner attitude controller defines the vehicle’s
attitude.

where CBE is the coordinate transformation matrix from the
coordinate system E to the coordinate system B.

The averaged thrust direction n is constant in hover, such
that ṅB = 0 and ṅE = 0, which leads to Jω̄BBE×KnB = 0
according to (9). Assuming ω̄BBE 6= 0, this implies that

nB = ± ω̄BBE∥∥ω̄BBE∥∥ (10)

where the sign is chosen such that n points upwards in the
inertial coordinate system.

The equilibrium propeller force eBP f̄P can be decomposed
into the horizontal and the vertical force, where the horizon-
tal force induces the circular motion and the vertical force
compensates for the vehicle’s weight. The angle β in Fig. 2
is the angle between the propeller force direction eBP and the
averaged thrust direction nB (where n is vertical according
to (10)). Then

cos (β) = eBPn
B (11)

and the vertical component of the equilibrium propeller force
on the vertical direction is:

f̄P cos(β) = m ‖g‖ . (12)

Substituting (10) into (11), and then substituting the resulting
equation into (12), yields the following solution for the
equilibrium thrust

f̄P =
m ‖g‖

∥∥ω̄BBE∥∥
|eBP ω̄BBE |

. (13)

In hover (i.e. setting the derivatives to zero), (2) becomes:

Jω̄BBE×K(IBBω̄
B
BE + IBP ω̄

B
PE) = JrBP×KeBP f̄P +

eBP τ̄P + τ̄Bd . (14)

Note that the quantities ω̄BPE , f̄P , τ̄P and τ̄ d are uniquely
defined by Ω̄ and ω̄BBE (see (3), (4), (5), (6), (7)), such that
we have four equations in four unknowns. The hover solution
is therefore defined by the Ω̄ and ω̄BBE that solve (13)-(14).
With the resulting Ω̄ and ω̄BBE all other quantities in hover
(such as nB or f̄P ) may be calculated.

III. CONTROL STRATEGY

The monospinner employs a cascaded control strategy,
where the outer loop is a position controller and the inner
loop is an attitude controller (see Fig. 3).

A. Position control

The position error of the vehicle (i.e. the vector to a desired
point in space) is defined as pE , and its velocity error as ṗE ,
where both are expressed in the inertial coordinate system. A
desired acceleration command p̈Edes is calculated as follows:

p̈Edes = −2ζωnṗ
E − ω2

np
E (15)

where ζ is a damping ratio and ωn is a natural frequency. If
p̈Edes can be tracked perfectly, the translational deviation pE

will behave like a damped second-order system. This accel-
eration command is used as input by the attitude controller.

The magnitude of the thrust force required by the position
control fpos, and the desired averaged thrust direction nEdes,
may be calculated from the desired acceleration as below,
from (1)

cos (β) fposn
E
des = m(p̈Edes − gE) (16)

where cos (β) is the fraction of the propeller thrust in the
averaged thrust direction from (11).

B. Reduced attitude control

The goal of the attitude controller is to control nE to
point along nEdes while producing the desired position control
thrust fpos. The control of a unit vector nE is often called
“reduced attitude control” [18].

For convenience a control coordinate system C is in-
troduced which is fixed with respect to the body-fixed
coordinate system B and where

nC = CCBnB = (0, 0, 1). (17)

The goal of controlling nE to nEdes is equivalently encoded
in the control coordinates as controlling nCdes to nC . It is
assumed that the inner attitude loop dynamics are much faster
than those of the outer position control loop, such that nEdes
may be taken as constant here, i.e. ṅEdes = 0. Then, according
to (9), the dynamics for ṅBdes are:

ṅBdes = −JωBBE×KnBdes. (18)

1) Attitude control state vector: A six dimensional state
vector is introduced, including two components of the aver-
aged thrust direction, three components of angular velocity,
and a motor force state. The averaged thrust direction compo-
nents ηi are introduced, such that nCdes = (η1, η2, η3), where
only η1 and η2 are considered as the states in the attitude
controller: this is because the unit vector has 2 degrees of
freedom, and η3 = 1 to first order near hover.

The three angular velocity components αi are introduced
as below:

ωCBE = CCBωBBE = (α1, α2, α3) (19)

where specifically by (10) and (17) the equilibrium angular
velocity ω̄BE expressed in coordinate system C is:

ω̄CBE = ±CCBnB
∥∥ω̄BBE∥∥ = (0, 0,±

∥∥ω̄BBE∥∥). (20)

The motor dynamics may have a large influence on the
attitude system, if the time constant of their response to com-
mands is comparable to the time constants of the remainder
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of the attitude system. For this reason the motor force is
also included as a state, and is approximated by a first order
system with time constant τmot:

ḟP = τ−1
mot(fcom − fP ) (21)

where fcom is the command thrust for the propeller and fP
is the current propeller thrust.

Under the assumption that the position control is much
slower than the attitude control so that fpos is constant, u is
introduced such that

u = fcom − fpos (22)

and (21) may be rewritten as

ḟP = τ−1
mot(fpos − fP + u). (23)

The reduced attitude control can be formalized by intro-
ducing the state deviation from the hover solution:

s = (η1, η2, α1, α2, α3, fP )− (0, 0, 0, 0,±
∥∥ω̄BBE∥∥ , f̄P ).

(24)
The time derivative ṡ follows from (18), (2) and (23) ex-

pressed in the coordinate system C. Defining u as the control
input and linearizing the system around the hover solution
yields a linear, time-invariant system as below, which may
be used to establish controllability of the monospinner:

ṡ ≈ As+Bu. (25)

2) Attitude controller design: A linear quadratic regulator
(LQR) is designed for (25), with cost on deviations from the
desired unit vector set to 75 s−1, cost on the angular velocity
set to 0, cost on the motor thrust deviation set to 0 and cost on
the input set to 1 N−2 s−1, to yield a static feedback gain K:

u = −Ks. (26)

Note that the resulting thrust command fcom = fpos + u
is a compromise between the attitude control input u and the
position control input fpos.

IV. DESIGN

Compared to the presented (ideal) model, the real system
includes several uncertainties such as parametric uncertain-
ties, unmodelled dynamics, and measurement noise. This
section presents the approach used to find a vehicle con-
figuration, such that the vehicle is sufficiently robust against
these uncertainties. Two different ways of comparing vehicle
configurations are presented: input saturation probability
and Monte Carlo analysis, while µ-analysis [19] is briefly
discussed.

A. Simplified mechanical model

To allow for efficient evaluation, a simplified mechanical
model is used for the analysis, where there are three ma-
jor components in the vehicle: the battery, the electronics
and the motor (including the propeller). The components’
contribution to the composite inertia matrix is approximated
as follows: the three major components are approximated
as point masses and the connecting frame components are

approximated as thin rods. From the inertia matrix (and by
assuming that the vehicle has similar drag coefficients as
the quadrocopter in [20]), the resulting vehicle’s equilibrium
solution and the linearized system matrices can be computed
as described in the preceding sections.

The battery is taken to have a weight of 0.06 kg, the
electronics 0.045 kg and the motor 0.04 kg. The connecting
rods are taken to have a length density of 0.06 kg m−1.

B. Choosing the vehicle configuration

The vehicle’s approximate size and shape are based on
the existing trispinner [14], with a Y-shape and a vehicle
diameter of approximately 40 cm. The three major compo-
nents are always taken to be coplanar and the positions of
the battery and the motor are fixed to be two vertices of an
equilateral triangle, while the position of the electronics is
to be determined.

A 2-dimensional grid search of the position of the electron-
ics is then conducted, where two different quality metrics are
considered. The first is the probability of input saturation, and
is based on the linear, time-invariant model of the attitude
system. The second metric uses Monte Carlo simulations
of the nonlinear system, including parameter perturbations
and noise, to approximate the probability that the resulting
vehicle is able to maintain a hover. The probability of input
saturation may be computed in closed form for a given design
and is therefore cheap to evaluate, but is less informative than
the Monte Carlo simulations.

1) Probability of input saturation: It is important to know
how measurement and process noises relate to the actual
input force, specifically how likely they are to lead to input
saturation. This is critical for the monospinner: because
the vehicle is not passively stable, input saturation may
quickly lead to a crash. Here, the linear-time invariant system
presented previously is discretized in time and augmented
with measurement and actuator noises as determined by
dedicated experiments. The stochastic characteristics of the
propeller force may then be calculated in closed-form.

Discretizing the system (25) with a zero-order-hold on the
input u[k] results in:

s[k + 1] = Ads[k] +Bdu[k] (27)

where Ad and Bd are the discretized system matrices.
A five-dimensional measurement noise wmeas[k] is intro-

duced, assumed to be zero-mean, white, and Gaussian. The
measurement z[k] is obtained by:

z[k] = Cds[k] + wmeas[k] (28)

where all states except the current propeller force are directly
measured

Cd =
[
I5 0

]
(29)

where I5 is the identity matrix and 0 ∈ R5 is a zero column
vector.

A steady-state Kalman filter yields a state estimate ŝ[k]:

ŝ[k] = (I6−KfCd)(Adŝ[k−1]+Bdu[k−1])+Kfz[k] (30)
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where Kf is the filter gain. The controller input follows
from applying the LQR gain (26) to the state estimate.
However, since there is actuator noise wact[k] (assumed
white, Gaussian, and zero-mean) in the system, the true
control input utrue[k] is:

utrue[k] = −Kŝ[k] + wact[k]. (31)

The extended state s̃[k] = (s[k], ŝ[k]) and noise w̃[k] =
(wmeas[k], wact[k]) are defined. Then, by using utrue[k]
instead of u[k], substituting (28) into (30) (to eliminate
z[k]) and defining the extended system matrices Ã, B̃, C̃
and D̃ from (27), (28), (30), and (31); the extended system
equations are:

s̃[k + 1] = Ãs̃[k] + B̃w̃[k] (32a)

utrue[k] = C̃s̃[k] + D̃w̃[k]. (32b)

Let Pw̃, Ps̃ and Putrue
be the variables’ associated steady-

state covariance matrices (e.g. Ps̃ = Var (s̃[k]) for k →∞).
By computing the variance of both sides of (32a), and letting
k →∞, the variance Ps̃ can be computed, which allows to
compute Putrue using (32b):

Ps̃ = ÃPs̃Ã
T + B̃Pw̃B̃

T (33a)

Putrue
= C̃Ps̃C̃

T + D̃Pw̃D̃
T . (33b)

Since Pw̃ is known from experiment and Ã and B̃ are
known, Ps̃ can be solved by (33a). Substituting into (33b)
gives the variance of the actuator Putrue . Since the noise w̃[k]
is assumed Gaussian, utrue[k] is also Gaussian.

Given its variance Putrue and the equilibrium thrust f̄P
(the Gaussian variable’s mean), the probability of saturating
the maximal allowed thrust at least once in 1000 time
steps may be calculated. Note that this allows to capture
the fact that a design with low variance may still have a
high probability of saturation if it has a high mean thrust.
The value of 1000 steps is chosen as it is equivalent to
one second of flight on the experimental platform. In this
way the saturation probability of varying positions of the
electronics is computed and shown in Fig. 4, and the results
are discussed below.

2) Monte Carlo analysis: For each position of the elec-
tronics, the nominal hover solution is solved for and an LQR
controller is designed using the costs given in the preceding
section: this controller is denoted as the “nominal controller”.
One hundred perturbed vehicles are then generated, by
perturbing the following: inertia matrix IBB , mass m, and
drag coefficients Kd,xx, Kd,yy and Kd,zz . Each of these
parameters is perturbed by sampling within a certain percent-
age range of the nominal value. For each perturbed vehicle
a nonlinear simulation is conducted, lasting 10 simulated
seconds. In addition to the perturbed parameters, actuator
noise and the measurement noises are simulated as in (28)
and (31).

The perturbed vehicle starts at the reference position in
the nominal hover state and is controlled by the nominal
controller. If the vehicle has distance greater than 5 m from
the reference position at the end of the simulation, it is
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counted as a failure case. For each candidate position of the
electronics, the number of failure cases is plotted in Fig. 5.
This number of failure cases is used as an indicator of the
robustness of corresponding nominal configuration.

3) Discussion: Note that in both Figs. 5 and 4, there is
a good, relatively flat, region of electronics position which
has similar small number of failure cases (respectively a
low probability of input saturation). The electronics’ position
was chosen as (−0.32,−0.03, 0)m in the coordinate system
shown, based on good performance in both metrics, and
a compromise with mechanical strength/complexity and the
length of the cables required to connect the components.

C. µ-analysis

An alternative analysis tool to the preceding is µ-analysis
[19], which aims to analyze whether a system is stable
even under the worst-case disturbances and perturbations.
However, this approach was found to be overly conservative,
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TABLE I
COMPONENTS OF THE MONOSPINNER

Component Name

Propeller GEMFAN GF 8045

Motor T-Motor MN2204-28 KV:1400

Motor controller AutoQuad ESC32

Command radio Laird RM024-S125-M-20

Flight controller PX4FMU v1.7

Battery G8 Pro Lite 480mAh 3-Cell/3S 11V

Power module APM Power Module

and did not yield a useful vehicle configuration.

V. RESULTING VEHICLE

The resulting vehicle, as shown in Fig. 1, has a mass
of 0.217 kg and moment of inertia as below (calculated from
a CAD-model):

IB =

102 24 9
24 318 0
9 0 414

× 10−5 kg m−2. (34)

The linearized system matrices are:

A =


0 23.7 0 −1 0 0

−23.7 0 1 0 0 0
0 0 −2.4 −9.5 5.2 −25.7
0 0 17.0 −0.4 10.8 −58.8
0 0 −1.8 −6.3 −1.0 −1.7
0 0 0 0 0 −18.2

 (35)

B =
[
0 0 0 0 0 18.2

]T
. (36)

It can be confirmed that the pair (A,B) is controllable, and
the eigenvalues of the system matrix A are: {±23.7j,−0.4±
15.5j,−2.87,−18.2}. Note that it has two eigenvalues on the
imaginary axis.

The expected hover solution for this vehicle is

ω̄BBE = (7.0,−3.7, 22.4) rad s−1 (37)
f̄P = 2.26 N . (38)

Table I lists the major components of the monospinner.

VI. EXPERIMENTAL VALIDATION

The mechanical and control designs are validated in exper-
iment in the Flying Machine Arena (FMA) at ETH Zurich.
An infrared motion capture system provides high-quality
position and attitude measurements of the vehicle. The
position control is run on a desktop computer at 50 Hz, with
commands transmitted wirelessly to the monospinner; the
attitude control is run on-board the vehicle at 1000 Hz. For
more information on the FMA infrastructure, see [20]. The
attached video illustrates the two types of experiments done:
take-off from a platform and hand-launching (throwing) 1.

1A link is available on the authors’ webpage
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video shows such an experiment.

A. Take-off and hover

The vehicle takes off from a passive mechanism, designed
to allow the vehicle achieve an angular velocity close to
its equilibrium. The mechanism consists of a platform, on
which the monospinner rests, connected by a bearing to the
ground, so that the monospinner can freely rotate about its
vector n. The rotation is achieved solely through the reaction
torque τP of the propeller, and the thrust is slowly ramped
up from zero to the equilibrium solution. Once sufficiently
close to equilibrium, the full control is switched on and the
vehicle takes off. Fig. 6 shows the vehicle states during take-
off, followed by approximately 25 s in hover, and then a
horizontal step of 2 m.

The hover solution the vehicle achieves in hover is as
below, which may be compared to the expected values in (37)
and (38)

ω̄BBE = (8.7,−2.1, 20.4) rad s−1 (39)
f̄P = 2.32 N . (40)

The discrepancy between the expected and the true hover
solution has the effect that in reality the state deviation s̄
in (24) and ū are not zero in hover. In order to produce
the correct thrust command f̄com for hovering (that is f̄P )
the position controller has to result a f̄pos different than f̄P
according to (22), which means a constant position error in
z-direction is needed according to (15) and (16). This steady-
state offset error is shown in Fig. 6.
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Fig. 7. Experimental results for the monospinner’s hand launch. The
vehicle is thrown at approximately 2 s, after which the controllers are
switched on. The angular velocity is plotted as expressed in the body-fixed
coordinate system, where ωB

BE = (p, q, r). The attached video shows such
an experiment.

B. Hand launch

Alternatively, the monospinner may be launched by throw-
ing it like a frisbee as shown in the attached video. This
is a faster method of achieving hover than the takeoff
mechanism in Section VI-A, and demonstrates the vehicle’s
ability to reject large disturbances. The state history during
a representative hand launch is shown in Fig. 7.

Note that the hover solution in Fig.7 is different than the
solution in Fig. 6:

ω̄BBE = (7.3,−0.7, 24.3) rad s−1 (41)
f̄P = 2.22 N . (42)

This is due to the slightly changed vehicle configuration,
where one of the motion capture markers was moved.

VII. CONCLUSION

This paper presents a controllable flying vehicle with only
one moving part and a single control input, which can fully
control its position. Notably, stability is achieved through
active control, rather than through passive aerodynamic
effects. The mechanical design follows from a search over
the parameter space, in an attempt to find a sufficiently robust
design. The resulting vehicle is validated in experiments,
wherein it is demonstrated that the vehicle can successfully
hover, and has sufficient control authority to achieve a hover
when hand-launched.
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