
Towards a consequences-aware emergency landing system for
unmanned aerial systems

Xiangyu Wu and Mark Mueller

Abstract— We present an algorithm with which an aerial
robot is capable of planning a consequences-aware flight path.
The robot is capable of reasoning about possible faults, and
which emergency actions are available to it. In this paper, we
focus on faults that would force the vehicle to land in a short
amount of time, and create a system that allows the vehicle to
reason about its ability to execute a safe emergency landing
from its current state. Such a system may improve the safety
and reduce the economic cost of aerial robots, by allowing them
to operate more flexibly whilst still achieving suitable safety.
Using an onboard camera, the flying robot is able to identify
safe landing spots, and attempt to compute trajectories from a
future state to the available landing spots. If no such emergency
trajectories are found, the robot must return to the last state at
which a safe emergency trajectory was available. Initial in-lab
experiments are shown, validating the feasibility of the concept.

I. INTRODUCTION

Aerial robots have been shown to be useful in many
applications such as search and rescue, surveillance, infras-
tructure inspection and package delivery. However, faults can
occur during the flight, which would make the aerial robots
become out of control and could cause serious damages to
property and injury to people. As a result, aerial vehicles
are often prohibited from (or severely constrained when)
operating in populated areas. The ability of aerial robots to
find emergency landing sites and perform emergency landing
are crucial for them to be widely used. The emergency
landing problem can be divided into three parts:

1) Detection of an aerial robot’s fault and assessment of
the effect of that fault.

2) Detection and selection of emergency landing sites.
3) Trajectory planning and trajectory tracking during an

aerial robot’s emergency landing.
The focus of this paper will be on items 2 and 3. There is sub-
stantial work on fault detection and isolation for multicopters,
and a survey of algorithmic approaches is given in [1].
Examples of works that examine partial failures of actuators
for multicopters are given in [2]–[4], and complete failures
are investigated in [5]–[9]. Flight after an actuator failure is
discussed in [10] and [11] for an octocopter and hexacopter,
respectively. Of course, in addition to algorithmic solutions,
a designer may use additional mechanical solutions, such as
adding a parachute to a vehicle [12] – though parachutes are
attractive, they add a substantial amount of mass, cutting the
vehicle’s flight time and payload.

The authors are with the Department of Mechanical Engineering, at the
University of California, Berkeley.
{wuxiangyu, mwm}@berkeley.edu

Previous work on the detection and selection of emergency
landing sites of aerial robots are briefly introduced as fol-
lows: In [13], [14] the authors use edge information for the
detection of safe landing places, while in [15] and [16], the
authors used machine learning methods to detect safe landing
regions. In [17] the authors propose initial designs for an
autonomous decision system for UAVs to select emergency
landing sites which consists of two main components: pre-
planning and realtime optimization. And in [18] the authors
present a system to detect safe landing spot base on elevation
map.

During flight, faults such as low battery, broken propellers,
malfunction of motors, etc. could occur. These faults would
limit the dynamics and reduce the available flight time of
the vehicle. In this preliminary work, we focus on faults
that would force the vehicle to land in a short amount of
time, and create a system that allows the vehicle to reason
about its ability to execute a safe emergency landing from its
current state. Examples of such faults include battery faults,
or sensor failures after which the vehicle’s state estimate can
only be relied upon for a short period.

For the detection of emergency landing site, our algorithm
is based on the texture of the ground. The main reason
of this choice is the computation efficiency: we want the
image processing algorithm to run completely on board while
being real time. For the trajectory planning part, we use the
method in [19]. This algorithm is computationally efficient
in the generation of motion primitives and verification of
their feasibility. It is used to check the feasibility of sampled

Fig. 1. During normal operations, the proposed system continuously uses
an onboard, downward-facing camera to classify safe and unsafe candidate
emergency landing positions (unsafe shown as checkered in the diagram),
then tries to compute trajectories from its current state to the identified safe
landing positions. Thus, the system is able to continuously guarantee a safe
emergency procedure if an emergency situation were to occur mid-flight.



landing sites and generate the reference trajectory to the
target emergency landing site. Thanks to the computational
efficiency of the image processing and reference trajectory
generation programs. Our algorithm is demonstrated experi-
mentally, and is able to run on a single-board computer on
a quadcopter. We hope our proposed system could enable
aerial robots to operate with improved safety and greater
flexibility. An illustration of the system is shown in Fig. 1.

II. SYSTEM OVERVIEW

This section describes the major components making up
the system. In the system, a downward looking camera is
used for taking pictures. The image is then passed to the
image processing part for the finding of safe sites. In image
processing, we use texture information to detect obstacles
on the ground. A site whose distance to obstacles is above a
threshold is considered safe. Next, the safe sites are tested for
whether they can be reached by the vehicle from its current
state, if an emergency were to occur. During normal flight,
the vehicle follows the nominal trajectory and the system
runs constantly in the background to check if a safe landing
site could be found and generates a trajectory to that place.
If no safe landing site could be found during the flight, the
vehicle must return to the last state at which a safe emergency
trajectory was available. When the vehicle has a fault, it
will switch from nominal trajectory tracking to emergency
landing trajectory tracking and land on the safe sites selected
by the system. Please refer to Fig. 2. for the block diagram
of the system.

A. Vision-based safe landing spot detection

In real world applications, it is important to run all safety-
related algorithms onboard the vehicle, since connection with
external computers cannot be guaranteed. Given that many
aerial robots are small in size, they often have limited energy
storage and power supply capacity, and can only carry a
limited amount of payload. As a result, for safe landing
spot detection, deep learning methods such as Convolutional
Neural Network is not a good choice because a GPU is
required for the image processing to be real-time and a
GPU adds a considerable amount of payload and power
consumption to the system. In the proposed system, we
detect safe landing places based on textures of the ground
and the Canny edge detector [20] is used. Thanks to the
computational efficiency of this method, we are able to do
the process of image processing, feasibility test, landing site
selection and reference trajectory generation in real time at
5Hz with an Odroid-XU4 on board.

In this system we are using a single downward-looking
camera for taking pictures, and we assume both that the
vehicle is oriented approximately horizontally and that the
ground is flat. Given these assumptions, we may infer the
distance between two sites on the ground directly from their

pixel distance in the picture:

xpixel =f
xcamera

zcamera
(1)

ypixel =f
ycamera

zcamera
(2)

with the f here being the focal length of the camera, xpixel

and ypixel represent a point’s coordinates in pixels and
xcamera, ycamera and zcamera represent a point’s 3D coordi-
nates (expressed in the camera frame). By the assumption of
the vehicle being horizontal, the horizontal distance between
an obstacle and a candidate landing point is proportional
to the pixel distance in the camera’s image coordinates,
with proportionality constant equal to the focal length of
the camera f divided by the vehicle’s current height.

After getting a raw picture from the camera, the first step
is to convert the picture to a grey-scale picture. The second
step is Gaussian blur, which is used to reduce the noises and
details of the picture. After that, the canny edge detector is
used for edge detection and the result is shown in Fig. 4. It
is assumed that if there are edges, there are obstacles at that
place and vice versa – this method is clearly not perfect, but
is likely to err on the side of caution while still being able
to run on low-cost, constrained hardware. The fourth step is
the calculation of each pixels distance to the nearest edge,
which represents a sites distance to the nearest obstacle.

Then, a user-defined number of points (Nsample) are sam-
pled uniformly at random in the image coordinates. For each
point, the distance (in pixel-space) is computed to the nearest
obstacle. To test the safeness of each site, a safety threshold
(in meter) is defined based on an assumed accuracy with
which the vehicle can follow a trajectory under emergency
conditions, i.e., a safety margin is added to the threshold to
guarantee that the emergency landing is safe considering final
state error. The corresponding threshold (in pixel), which is
inversely proportional to the height of the vehicle, is then
compared with each site’s distance to the nearest obstacle: if
the distance (in pixel) is larger the the threshold (in pixel),
then the site is marked as safe.

B. Trajectory planning and feasibility test

For the trajectory generation, we used the method pro-
posed in [19]. The reason for choosing this method is because
of its computational efficiency: it is able to generate more
than 1 million trajectories within a second. Here we present
a very brief introduction to the trajectory generation method:
this method calculates an optimal trajectory from an initial
state to a final state in time T which minimizes the third
derivative of the position (the jerk). In the context of this
paper, the time T is a user-defined length of time, sufficiently
short so that the vehicle could land in emergency conditions.
The trajectory generator aims to minimize the cost function
JΣ, defined as below

JΣ =
1

T

T∫
0

‖j(t)‖2 dt. (3)



Fig. 2. A block diagram of the system, showing the relationship between various components.

Fig. 3. A representative (unprocessed) image, as may be taken from a
UAV operating over a potentially sensitive site. The image is taken from
https://www.sensefly.com/.

Fig. 4. The image of Figure 3 after edge detection.

Fig. 5. The image of Figure 3 after all image processing. The points
represent sampled candidate landing sites. If a site is marked red, that site
is reachable for the vehicle under emergency. If a site is marked blue, that
site is not reachable for the vehicle under emergency. The selected landing
site is the center of the yellow circle, being that reachable site farthest away
from an obstacle.

wherein j is the vehicle’s instantaneous jerk along the
trajectory and ‖·‖ denotes the Euclidean norm.

The cost function, JΣ, is decoupled into a per-axis cost Jk
by expanding the integrand in (3).

JΣ =

3∑
k=1

Jk, where Jk =
1

T

T∫
0

jk(t)
2 dt (4)

For each axis k, the state sk = (pk, vk, ak) is introduced,
consisting of the scalars position, velocity, and acceleration.
The optimal state trajectories can be solved with Pontryagins
minimum principle (see [21]), and the solutions are polyno-
mials in time.

This method also checks the feasibility of the trajectory:
it checks if each candidate trajectory meets the dynamic
constraints of the system and does not collide with obstacles.
For the input feasibility, the algorithm constrains the thrust f
produced by the vehicle lies in the range:

0 < fmin ≤ f ≤ fmax (5)



Fig. 6. A flowchart of the state machine of the system.

where fmin and fmax are the user-defined minimum and
maximum normalized thrusts that the vehicle can achieve.
The trajectory generator also allows for constraints on the
angular velocity of the vehicle:

‖ω‖ ≤ ωmax (6)

where ω is the vehicle’s angular velocity and ωmax is the
maximum allowed angular velocity. Furthermore, constraints
need to make sure that the vehicle remains within a certain
flight space. Planar constraints can be specified by specifying
that inner product of the vehicle’s position with the normal
of the plane is grater than some constant value.

For the proposed system, this trajectory generation method
is used to check the ability of the vehicle to reach candidate
sites, and to generate a reference trajectory to the chosen
target landing site. The safe sites from the previous image
processing part are tested for reachability under emergency
conditions. Finally, from the safe and reachable points, that
site which is farthest from obstacles is chosen to be the
current target landing site under emergency. See Fig. 5 for
the feasible points selected from the example of Fig. 3. The
pixel coordinates of the target landing site is transformed to
world coordinates, using the intrinsic matrix of the camera,
the position data of the vehicle and the assumption that
the ground is flat. The program then generates a reference
trajectory to the target landing site.

C. State Machine

The emergency system runs in the background, during
normal flight operations, continuously seeking out safe and
reachable landing points. When an emergency is detected, the
system aborts the normal flight, and instead an emergency
controller takes over. This emergency controller executes the
currently valid emergency landing path, until the vehicle
lands safely. If, in flight, no safe landing spots are detected,
the vehicle must return to the previous position at which
a safe position was detected – there, it may attempt to
sample more points (until perhaps a safe emergency landing
is detected and it may proceed), or it must await external
instructions / execute an alternative. A flowchart is shown in
Fig. 6.

Fig. 7. The Quadcopter used in the experiment. (1) The onboard computer,
(2) the embedded flight computer with IMU sensors, and (3) the downward
looking camera

III. EXPERIMENTAL VALIDATION

To test the system, we used a custom built Quadcopter
as shown in Fig. 7. The hub-to-hub distance of the vehicle
is 330mm, the propeller diameter is 203mm. A downward
looking mvBlueFOX-MLC200w camera is used for taking
pictures with a resolution of 752×480 pixels. A Crazyflie 2.0
[22] running a modified version of the PX4 software stack
[23] is used as flight control board which runs the low-level
controller of the UAV, ultimately sending control signals
to the vehicle’s motor controllers. The image processing,
landing region selection, feasibility test and estimation parts
are run on a Odroid-XU4 computer board. The overall weight
of the vehicle is 858g. The Robot Operating System (ROS)
[24] is used as middleware.

The experiments were done in an indoor lab space of
dimension 7 × 6 × 5m. For the localization of our vehicle
during the experiment, we used a commercial motion capture
system, which is equipped with eight motion capture cameras
for high-rate, high-fidelity state estimation. The data from
the motion capture system is transmitted to a laptop for
parsing and then published as a ROS message. An Extended
Kalman Filter runs on the onboard computer, fusing motion
capture information and control commands. Note, though,
that the proposed algorithm does not, in principle, rely on
having access to a motion capture system and would work if
alternative methods of estimation / control were used, such
as using GPS signals. The estimated state is then used for
feasibility test, reference trajectory generation, and coordi-
nate transformation between image and the world frame.
During the experiment, we use a joystick to simulate an
emergency event, which then triggers an emergency landing
of the vehicle.

During the experiment, we put several boxes on the ground
to emulate obstacles. The vehicle’s trajectory in experiment
is a horizontal sine wave, of amplitude 1m, at a constant
height of 3m, flying over a variety of obstacles (boxes, in



the experiment). During the flight, the onboard system con-
tinuously processes images, identifying safe and reachable
landing positions at an overall rate of 5Hz.

In the experiment, we simulate faults such as battery faults
or sensor failures after which the vehicle’s state estimate
can be only relied on for a short period. The time allowed
for the vehicle to land is set to T = 2.5s. The maximum
normalized thrust of the vehicle is set to fmax = 15m/s2,
and the minimum thrust is set to fmin = 5m/s2. At each
time instant, the system sample Nsample = 1000 candidate
points.

The experiment shows that our initial emergency land-
ing system is able to detect and select safe landing spot,
generate corresponding reference trajectory to that site and
let the UAV follow the reference trajectory to land there.
The emergency landing site finding and reference trajectory
algorithm can run at 5Hz on Odroid XU4 and is proved to
be computationally efficient.

IV. CONCLUSION AND FUTURE WORK

In this paper we proposed a system which enables the
unmanned aerial vehicles to plan a consequences-aware flight
path. In this initial version of the system, we focus on faults
that force the vehicle to land in a short amount of time.
The system allows the vehicle to select its target emergency
landing site based on its current state and the environment
around it and land at the selected site. Finally, an experiment
is done to verify the function of the system.

For future work, we will include additional failure modes
to the system, for example, degraded dynamics and sensor
failures. In addition, the image processing part will be
improved to achieve higher-fidelity recognition of safe spots.
In addition to the indoor experiment, we plan to validate the
system through out-door flights.

V. ACKNOWLEDGEMENT

This research was supported by a 2017 Seed Fund Award
from CITRIS and the Banatao Institute at the University of
California.

REFERENCES

[1] Y. Zhang, A. Chamseddine, C. Rabbath, B. Gordon, C.-Y.
Su, S. Rakheja, C. Fulford, J. Apkarian, and P. Gosselin,
“Development of advanced FDD and FTC, techniques with
application to an unmanned quadrotor helicopter testbed,”
Journal of the Franklin Institute, vol. 350, no. 9, pp. 2396–
2422, 2013.

[2] M. Ranjbaran and K. Khorasani, “Fault recovery of an
under-actuated quadrotor aerial vehicle,” in IEEE Annual
Conference on Decision and Control (CDC), IEEE, 2010,
pp. 4385–4392.

[3] H. A. Izadi, Y. Zhang, and B. W. Gordon, “Fault tolerant
model predictive control of quad-rotor helicopters with ac-
tuator fault estimation,” in Proceedings of the 18th IFAC
World Congress, 2011, pp. 6343–6348.

[4] A. Chamseddine, Y. Zhang, C. A. Rabbath, C. Join, and D.
Theilliol, “Flatness-based trajectory planning/replanning for
a quadrotor unmanned aerial vehicle,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 48, no. 4, pp. 2832–
2848, 2012.

[5] A. Freddi, A. Lanzon, and S. Longhi, “A feedback lin-
earization approach to fault tolerance in quadrotor vehicles,”
in Proceedings of the 18th IFAC World Congress, 2011,
pp. 5413–5418.

[6] A. Akhtar, S. Waslander, and C. Nielsen, “Fault tolerant path
following for a quadrotor,” in IEEE Annual Conference on
Decision and Control (CDC), Dec. 2013, pp. 847–852.

[7] A. Lanzon, A. Freddi, and S. Longhi, “Flight control of a
quadrotor vehicle subsequent to a rotor failure,” Journal of
Guidance, Control, and Dynamics, vol. 37, no. 2, pp. 580–
591, 2014.

[8] M. W. Mueller and R. D’Andrea, “Stability and control of a
quadrocopter despite the complete loss of one, two, or three
propellers,” in IEEE International Conference on Robotics
and Automation (ICRA), 2014.

[9] M. W. Mueller and R. D’Andrea, “Relaxed hover solutions
for multicopters: Application to algorithmic redundancy and
novel vehicles,” The International Journal of Robotics Re-
search, vol. 35, no. 8, pp. 873–889, 2016.

[10] A. Marks, J. F. Whidborne, and I. Yamamoto, “Control
allocation for fault tolerant control of a VTOL octorotor,” in
UKACC International Conference on Control, IEEE, 2012,
pp. 357–362.

[11] M. C. Achtelik, K.-M. Doth, D. Gurdan, and J. Stumpf,
“Design of a multi rotor MAV with regard to efficiency,
dynamics and redundancy,” in AIAA Guidance, Navigation,
and Control Conference, 2012, pp. 1–17.

[12] Fruity chutes, “Drone parachute launcher, light weight, sim-
ple, and world class parachutes!” (Accessed 26 Feb. 2018)
https://fruitychutes.com/uav_rpv_drone_
recovery _ parachutes / drone _ multicopter _
quadcopter_recovery_parachutes.htm, 2018.

[13] D. Fitzgerald, R. Walker, and D. Campbell, “A vision based
forced landing site selection system for an autonomous uav,”
in 2005 International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, Dec. 2005,
pp. 397–402.

[14] Y. F. Shen, Z. U. Rahman, D. Krusienski, and J. Li, “A
vision-based automatic safe landing-site detection system,”
IEEE Transactions on Aerospace and Electronic Systems,
vol. 49, no. 1, pp. 294–311, Jan. 2013.

[15] X. Guo, S. Denman, C. Fookes, and S. Sridharan, “A robust
uav landing site detection system using mid-level discrim-
inative patches,” in 2016 23rd International Conference on
Pattern Recognition (ICPR), Dec. 2016, pp. 1659–1664.

[16] X. Guo, S. Denman, C. Fookes, L. Mejias, and S. Sridharan,
“Automatic uav forced landing site detection using machine
learning,” in 2014 International Conference on Digital Image
Computing: Techniques and Applications (DICTA), Nov.
2014, pp. 1–7.

[17] J. Ding, C. J. Tomlin, L. R. Hook, and J. Fuller, “Initial
designs for an automatic forced landing system for safer
inclusion of small unmanned air vehicles into the national
airspace,” in 2016 IEEE/AIAA 35th Digital Avionics Systems
Conference (DASC), Sep. 2016, pp. 1–12.

[18] C. Forster, M. Faessler, F. Fontana, M. Werlberger, and D.
Scaramuzza, “Continuous on-board monocular-vision-based
elevation mapping applied to autonomous landing of micro
aerial vehicles,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), May 2015, pp. 111–118.

[19] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computa-
tionally efficient motion primitive for quadrocopter trajectory
generation,” IEEE Transactions on Robotics, vol. 31, no. 6,
pp. 1294–1310, Dec. 2015.

[20] J. Canny, “A computational approach to edge detection,”
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. PAMI-8, no. 6, pp. 679–698, Nov. 1986.

[21] D. P. Bertsekas, Dynamic Programming and Optimal Con-
trol, Vol. I. Athena Scientific, 2005.



[22] Bitcraze. (2018). Crazyflie 2.0, [Online]. Available: www.
bitcraze.io/crazyflie-2 (visited on 02/25/2018).

[23] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer,
and M. Pollefeys, “Pixhawk: A micro aerial vehicle design
for autonomous flight using onboard computer vision,” Au-
tonomous Robots, vol. 33, no. 1-2, pp. 21–39, 2012.

[24] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: An open-source
robot operating system,” in ICRA Workshop on Open Source
Software, 2009.


