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Abstract— This paper presents a novel quadcopter design
with an added momentum wheel for enhanced stability. The
novel vehicle has improved torque disturbance rejection capa-
bilities compared to a standard quadcopter. An analysis of the
vehicle dynamics shows that the effect of torque disturbances
decreases monotonically with increasing angular momentum
of the momentum wheel. A framework for choosing the mass
moment of inertia and speed of the momentum wheel is given
based on an upper bound on the allowable energy stored in
the wheel. Theoretical results are experimentally validated by
comparing responses to torque impulses applied to the vehicle
with and without the momentum wheel spinning.

I. INTRODUCTION

In recent years, quadcopters have been widely used for a
variety of applications such as aerial imaging [1], environ-
mental monitoring [2], building inspection [3], and search
and rescue [4]. However, the operation of these vehicles is
currently limited in environments with major disturbances.
While several control schemes have been developed that aim
to reduce the effect of disturbances (such as the switching
MPC attitude controller presented in [5] and the disturbance
accommodation controller presented in [6]), the performance
of the vehicle is inherently limited by its dynamics and by
the available range of control inputs. Thus, any increases in
performance beyond the capabilities of a control algorithm
necessarily require changes to the vehicle design.

One such change is to include a large source of angular
momentum on the vehicle in the form of a momentum wheel.
A realization of this concept is shown in Figure 1. The
contribution of the momentum wheel to the dynamics of the
vehicle can be scaled mid-flight by changing the speed at
which it spins, allowing for the dynamics of the vehicle to
be changed without a proportional increase in mass. The
additional angular momentum of the vehicle allows for an
improved rejection of torque disturbances, enhancing the
ability of the vehicle to fly in environments with high wind
shear or flying debris (e.g. tornadoes, hail storms, etc.).

The additional angular momentum results in dynamics
similar to those of dual-spin spacecraft, which are defined
by the use of two bodies rotating about a shared spin axis
to maintain a desired attitude. The attitude stability criteria
for dual spin spacecraft are presented in [7].

Other unconventional quadcopter designs capable of
changing the dynamics of the vehicle mid-flight include a
quadcopter with tilting propellers as presented in [8] and a
quadcopter capable of changing the length and orientation of

The authors are with the High Performance Robotics Lab, Univer-
sity of California, Berkeley, CA 94703, USA. {nathan bucki,
mwm}@berkeley.edu

Fig. 1. Quadcopter with added momentum wheel, shown from below. The
momentum wheel is driven by a speed-controlled motor mounted underneath
the vehicle.

its arms as presented in [9]. Both of these vehicles increase
the number of available control inputs to the system, resulting
in a vehicle that is potentially more maneuverable/versatile
than a standard quadcopter. Additionally, the dynamics of
rotating flying machines has been investigated in [10] and
[11], showing vehicles with significant angular momentum
are able to be controlled with fewer actuators. In contrast
to these designs, we focus specifically on improving the
disturbance rejection of the vehicle.

This paper is organized as follows: Section II derives the
dynamics of the vehicle, Section III details the controller
architecture, Section IV describes how the momentum wheel
parameters are chosen, and Section V presents experimental
data.

II. DERIVATION OF SYSTEM DYNAMICS

In this section we present the derivation of the full vehicle
dynamics as well as a linearized version of the rotational
dynamics.

A. Notation

Non-bold symbols such as m represent scalars, lowercase
bold symbols such as g represent first order tensors (vectors),
and uppercase bold symbols such as J represent second
order tensors (matrices). The short-hand notation (x, y, z)
represents a column vector. Subscripts such as mB represent
the body to which the scalar/tensor is related, and super-
scripts such as gE represent the frame in which the tensor
is expressed. The inertial frame is notated with E and the
body-fixed frame with B.

B. System Dynamics

Figure 2 shows a model of the augmented quadcopter.
The mass and mass moment of inertia of the quadcopter are



Fig. 2. Model of quadcopter with added momentum wheel. The momentum
wheel rotates about zB with angular velocity ωG. Each propeller produces
thrust force fPi

and reaction torque τPi
about the propeller’s axis of rotation

at a distance ri from the center of mass.

denoted mB and JB , and the mass and mass moment of
inertia of the momentum wheel are denoted mG and JG.
The momentum wheel spins about zB with angular velocity
ωB

G = (0, 0, ωG) relative to the body-fixed frame. The total
vehicle mass is written as mΣ = mB +mG, and the total
vehicle inertia is written as JB

Σ = JB
B + JB

G . Note that JB
G

is constant when expressed in the body-fixed frame due to
the axial symmetry of the momentum wheel about its axis
of rotation.

Each propeller produces thrust force fPi
in the direction of

zB at a displacement ri from the vehicle center of mass. The
reaction torque produced by a given propeller is assumed to
be linearly related to the thrust force by τPi

= κifPi
, where

the magnitude and sign of κi are determined by the geometry
and rotation direction of propeller i [12].

The attitude of the quadcopter is written as yaw, pitch,
and roll (notated ψ, θ, φ), and the angular velocity of the
quadcopter is given as ωB

B = (p, q, r) where p, q and r are
the body rates of the vehicle about the xB , yB , and zB axes
respectively. The position of the quadcopter relative to a fixed
point in the inertial frame is written as dEB = (x, y, z).

The translational dynamics of the system are derived using
Newton’s second law for rigid bodies, where the external
forces are taken to be the four thrust forces and gravity [13].
The translational dynamics are expressed in the inertial frame
E.

mΣd̈
E
B = mΣg

E + zEB

4∑
i=1

fPi
(1)

The rotational dynamics are derived using Euler’s law
for clustered bodies with a fixed center of mass [13], and
are expressed in the body-fixed frame. The skew-symmetric
matrix form of the cross product is written as S(a) such
that S(a)b = a×b. The disturbance torque is written in the
body-fixed frame as τB

v .

JB
Σ ω̇

B
B + JB

G ω̇
B
G + S(ωB

B )

(
JB

Σ ω
B
B + JB

Gω
B
G

)
=

4∑
i=1

(
S(rBi )zBBfPi

+ zBBτPi

)
+ τB

v

(2)

C. Linearized Rotational Dynamics

Although the momentum wheel increases the total mass
of the vehicle, it mainly affects the dynamics of the system
through its angular momentum. Thus, we choose to analyze
how the rotational dynamics in (2) are affected by the angular
momentum provided by the wheel. The rotational dynamics
additionally determine the thrust direction of the quadcopter,
which dominates the translational acceleration of the vehi-
cle. Here we present the linearized rotational dynamics as
background for the following controller synthesis and system
analysis.

In linearizing the rotational dynamics we assume that xB ,
yB , and zB are principal axes of inertia of both the body
and the wheel. The principal mass moments of inertia in
the xB , yB , and zB directions are then denoted JB,xx,
JB,yy, and JB,zz respectively for the quadcopter body and
JG,xx, JG,yy, and JG,zz for the momentum wheel. We also
assume JΣ,xx = JΣ,yy because the quadcopter is symmetric
in the xB and yB directions, and assume ωB

G to be constant
because the speed of the momentum wheel is controlled by
a high bandwidth speed controller.

The linearized rotational dynamics are given in the form
ẋ = Ax+B1τ

B
v +B2τ

B
u . Here we choose the states to be the

attitude and body rates of the vehicle, x = (φ, θ, ψ, p, q, r)
and the control inputs to be the body torques produced by
the propellers, τB

u =
∑4

i=1(S(r
B
i )zBBfPi

+ zBBτPi
). Let I

represent the identity matrix.

A =

[
0 I
0 A1

]
, A1 =


0 −JG,zzωG

JΣ,xx
0

JG,zzωG

JΣ,yy
0 0

0 0 0


B1 = B2 =

[
0

(JB
Σ )−1

]
(3)

III. CONTROL ALGORITHM

The quadcopter is controlled using a cascaded control de-
sign as shown in Figure 3. The position controller computes
the desired total thrust and thrust direction from the current
position and velocity of the quadcopter, and the attitude
controller computes the desired body torques required to
track the desired thrust direction and desired yaw angle.
Finally, the thrust forces of each propeller necessary to
generate the desired body torques and total desired thrust
are computed.

A. Position Control

The position controller is designed such that the position
error behaves as a second order system with damping ratio
ζp and natural frequency ωp. The desired acceleration d̈EB,d

is computed from the desired position and velocity of the
quadcopter, ḋEB,d and dEB,d. The desired thrust and thrust
direction, fcmd and zEB,d, are then computed from the desired
acceleration. All quantities are expressed in the inertial



Fig. 3. Quadcopter controller architecture. An LQR attitude controller
is cascaded with a position controller in order to produce desired body
torques, which are then converted into propeller thrust forces. Position and
orientation feedback is provided by a motion capture system, and angular
velocity feedback is provided by an onboard rate gyroscope.

frame.

d̈EB,d = 2ζpωp(ḋ
E
B,d − ḋEB) + ω2

p(d
E
B,d − dEB) + gE (4)

fcmd = ||d̈EB,d||2, zEB,d =
d̈EB,d

||d̈EB,d||2
(5)

B. Attitude Control

Let the Euler angles (φe, θe, ψe) represent the rotation
from the current attitude to the desired attitude, which
is defined by the desired thrust direction zB,d and the
desired yaw angle. The angular velocity error is defined
as ωe = ωB − ωB,d, where ωB,d is the desired angu-
lar velocity of the quadcopter. Thus, the state vector for
the linearized system defined in (3) is defined as x =
(φe, θe, ψe, ω

B
e,x, ω

B
e,y, ω

B
e,z).

The optimal infinite-time LQR attitude state feedback
controller τB

u = −Kx is computed using the state and input
quadratic cost matrices defined below. The Q and R matrices
are chosen such that roll and pitch are penalized equally
because of the symmetry of the vehicle. The body torques
about xB and yB are penalized equally for the same reason.
We choose not to explicitly penalize the angular velocity of
the vehicle.

Q = diag (qxy, qxy, qz, 0, 0, 0)
R = diag (rxy, rxy, rz)

(6)

The state feedback gain that minimizes the infinite-time
LQR cost function is K = R−1BT

2 P , where P is the
solution to the continuous time algebraic Riccati equation,
ATP + PA − PB2R

−1BT
2 P = −Q [14]. By leveraging

the fact that ψe and ωB
e,z (yaw error and yaw rate error) are

decoupled from the rest of the linearized system, we are able

to analytically solve for K in terms of the system parameters:

K =

 α β 0 γ 0 0
−β α 0 0 γ 0
0 0 η 0 0 ν


L = JG,zzωG , H =

√
16
qxy
rxy

J2
Σ,xx + L4 − L2

α =
H

4JΣ,xx
, β =

L
√
2H

4JΣ,xx
, γ =

√
2H

2

η =

√
qz
rz

, ν =

√
2JΣ,zz

√
qz
rz

(7)

The analytic solution for K allows the LQR optimal
feedback attitude controller to be computed on-the-fly for any
given momentum wheel speed, system parameters, and state
and input costs. Note that as L → 0 the system decouples
into three independent subsystems dependent on (φe, ωB

e,x),
(θe, ωB

e,y), and (ψe, ω
B
e,z) as is usual for quadcopters.

C. Torque to Thrust Conversion

After the desired body torques τB
u have been computed,

the thrust forces required to achieve these torques while
maintaining the total thrust commanded by the position
controller are computed. Let ri,x and ri,y be the components
of ri in the xB and yB directions. The equation below shows
how the desired thrust force of each propeller is computed.

fPi =
1

4

([
r−1
i,y −r−1

i,x κ−1
i

]
τB
u + fcmd

)
(8)

The desired speed of each propeller can be computed
based on the desired thrust forces as shown in [12]. Elec-
tronic speed controllers are then used to drive the propellers
to their desired speeds.

IV. MOMENTUM WHEEL DESIGN

In this section we analyze the disturbance rejection prop-
erties of the linearized system and provide a framework for
choosing the momentum wheel parameters.

A. Disturbance Sensitivity Analysis

The motivation for the addition of a source of angular
momentum to the vehicle is based on the reduction of the
state feedback H2 norm of the linearized system as the
total angular momentum about zB is increased. We define
the disturbance as τB

v = (τBv,x, τ
B
v,y, 0) and the output to

be minimized as z = C1x + D12τ
B
u , with C1 and D12

defined based on Q and R in (6) so that Q = CT
1 C1 and

R = DT
12D12.

C1 =

[
Q1/2

0

]
, D12 =

[
0

R1/2

]
(9)

In this context, the state feedback H2 norm can be con-
sidered the expected root-mean square value of the output z
when the disturbances are unit variance, white noise torques
about xB and yB [15]. Alternately, the state feedback H2

norm can be considered a sum of the signal energies of z
for Dirac torque impulses about xB and yB [16]. The output
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Fig. 4. Normalized H2 norm of linearized attitude dynamics (top) and
range of feasible angular momentums (bottom). As the angular momentum
of the momentum wheel increases, the system’s sensitivity to disturbances
(as quantified by the H2 norm) monotonically decreases. The maximum
angular momentum of the wheel is bounded by constraints on the maximum
moment of inertia of the wheel and by the maximum rotational energy
allowed to be stored in the wheel. Both plots use parameters of the
experimental platform.

signal energy is defined below. Note that the state feedback
H2 optimal controller is equivalent to an infinite-time LQR
optimal controller under full state feedback.

||z||2 =

(∫ ∞
0

zT (t)z(t)dt

)1/2

=

(∫ ∞
0

xTQx+ (τB
u )TRτB

u dt

)1/2
(10)

Figure 4 shows how the normalized state feedback H2

norm of the system presented in (3) changes as the angular
momentum of the momentum wheel increases. The state
feedback H2 norm is calculated using the physical parame-
ters of the experimental platform shown in Figure 1.

B. Choice of Momentum Wheel Parameters

As suggested by the state feedback H2 norm analysis,
a design that maximizes the angular momentum of the
momentum wheel is desired, but the size, mass, and speed of
the wheel are limited by both physical and safety constraints.
Although in theory the momentum wheel could spin as fast
as the maximum speed of the motor driving it, this would
result in a large amount of kinetic energy being stored in the
wheel, which may pose a safety risk in the event of a crash
or structural failure.

Thus, we choose to impose a bound on the maximum
energy stored in the wheel, Emax, related to the maximum
energy stored in the propellers of the vehicle. For the

experimental vehicle we choose Emax to be two times the
maximum rotational energy stored in the propellers of the
vehicle.

The mass moment of inertia of a single propeller
used on the experimental vehicle was measured to be
1.9× 10−5 kgm2, and the maximum angular velocity was
measured to be 960 rad s−1. The maximum rotational energy
stored in the vehicle’s propellers is then 35 J, giving Emax =
70 J.

A second constraint on the total angular momentum is
imposed by a limit on the mass moment of inertia of the
wheel. This bound is based on the maximum allowed mass
and size of the wheel, which is determined by the payload
capacity and size of the quadcopter. Based on the payload
capacity and size of the experimental vehicle, a maximum
mass of 100 g and maximum radius of 9.5 cm were speci-
fied. The maximum inertia of an aluminum wheel designed
to meet these constraints was found to be JG,zz,max =
6.4× 10−4 kgm2.

An optimization problem for choosing the momentum
wheel parameters is formulated below. The optimum angular
momentum of the wheel occurs when JG,zz is maximized,
and the optimum angular velocity of the wheel is determined
by the maximum allowable energy.

max
JG,zz, ωG

JG,zz, ωG

s.t. 1
2JG,zzω

2
G ≤ Emax

JG,zz ≤ JG,zz,max

(11)

A graphical representation of (11) is shown in Figure 4.
The optimal rotational speed of the momentum wheel for
the experimental vehicle is 468 rad s−1, giving a maximum
angular momentum of 0.30 kgm2 s−1. This corresponds to
a 30% reduction of the state feedback H2 norm of the
system when compared to the same system without the wheel
spinning.

V. EXPERIMENTAL RESULTS

This section presents the experimental results obtained
from flights using the test vehicle shown in Figure 1. We first
test the vehicle’s ability to reject torque impulse disturbances,
and then show the vehicle’s reaction to a step change
in desired hover position to demonstrate that the vehicle
remains agile. Comparisons are made between vehicles with
and without the wheel spinning.

A. Platform
A custom quadcopter and momentum wheel were used for

testing. The physical parameters of the vehicle are listed in
Table I. The position controller parameters were chosen to
be ζp = 0.7 and ωp = 2 rad s−1. The parameters for the Q
and R matrices in (6) were chosen using Bryson’s rule [17].
Specifically, we choose the following desired bounds on the
states and inputs to the system, assuming |ri,x| = |ri,y| by
symmetry of the vehicle.

φmax = θmax = ψmax = 30◦ = 0.52 rad

τBu,x,max = τBu,y,max = |ri,x|fPi,max = 0.805Nm

τBu,z,max = |κi|fPi,max = 0.096Nm

(12)



TABLE I
TEST VEHICLE PHYSICAL PARAMETERS

Parameter Value
mB 822 g
mG 100 g
IB,xx 1.0× 10−2 kgm2

IB,zz 5.5× 10−3 kgm2

IG,xx 3.2× 10−4 kgm2

IG,zz 6.4× 10−4 kgm2

fPi,max 6.86N
||ri||2 0.166m
|κi| 0.014m

From the desired bounds on the states and inputs we select
the parameters of the Q and R matrices as follows.

qxy = qz =
1

(φmax)2
= 3.7 rad−2

rxy =
1

(τBu,x,max)
2
= 1.54(Nm)−2

rz =
1

(τBu,z,max)
2
= 108.5(Nm)−2

(13)

The position and attitude of the quadcopter are measured
directly by an external motion capture system, and the
angular velocity of the quadcopter is measured using an
onboard rate gyroscope. The position controller runs on an
offboard computer and sends commands to the quadcopter
via radio at 50Hz. The attitude controller is ran onboard the
quadcopter at 500Hz.

B. Disturbance Rejection

The ability of the vehicle to reject torque disturbances was
tested using a torque impulse created via a collision with a
steel ball dropped from a height of 1m above the hovering
quadcopter. The quadcopter was modified to include an arm
extension capable of withstanding a collision with the ball,
and a second arm extension was included to balance the
vehicle. The arm extensions had masses of 24 g each, slightly
increasing the total mass and mass moment of inertia of the
vehicle.

Two test cases were examined, both without the wheel
spinning and with the wheel spinning at a speed of
468 rad s−1. In test case (a), a ball with a mass of 67 g was
used to generate a torque impulse of 0.092Nms, and in test
case (b) a ball with a mass of 135 g was used to generate a
torque impulse of 0.186Nms. The masses of the balls were
chosen such that the collision with the smaller ball did not
result in commanded thrust values higher than that maximum
thrust fPi,max for any propeller, while the collision with the
larger ball did result in at least one propeller reaching the
maximum thrust value during the test. The thrust produced
by each propeller was additionally limited to be greater than
0N.

Figures 5a and 5b show the position error, attitude error,
and thrust range plots corresponding to test cases (a) and (b)
respectively. Figure 6 displays a series of images showing
how the quadcopter responds to test case (b).

C. Agility

The agility of the vehicle is demonstrated by commanding
a step change in desired hover position. Figure 7 shows
how each vehicle reacts to a 1.5m horizontal step change
in desired hover position. As shown, both vehicles perform
similarly, indicating that the additional angular momentum
provided by the momentum wheel does not seriously impede
the agility of the vehicle.

D. Discussion of Results

In order to verify the disturbance sensitivity analysis
presented in Section IV-A, we compute the ratio δ of the
output signal energy of the system for test case (a) with the
stationary wheel (defined as z1) and with the spinning wheel
(defined as z2). The ratio δ corresponds to the normalized
state feedback H2 norm presented in Figure 4. In calculating
the output signal energy we evaluate (10) numerically for
t ∈ [0, 2.5]. The attitude component of the state vector x in
(10) is computed using the Euler angles (ψ, θ, φ) as defined
in Section II-B.

δ =
||z2||2
||z1||2

= 0.68 (14)

We observe an experimental reduction of the state feed-
back H2 norm by 32%, which only slightly differs from
our predicted reduction of 30%. Although we have both
theoretically and experimentally shown that the additional
angular momentum provided by the momentum wheel can
significantly improve the disturbance rejection of the vehicle,
our analysis thus far has not included any constraints on the
maximum thrust the propellers can produce, fPi,max. In test
case (b), we observe that the disturbance is large enough
to cause the thrust forces to reach this bound when the
wheel is stationary. However, the thrust forces stay within
their limits when the wheel is spinning. The lack of thrust
saturation when the wheel is spinning results in position
and attitude errors that are far lower than when the wheel
is stationary. Additionally, we observe that the position and
attitude responses are nearly identical for test cases (a) and
(b) when the wheel is spinning.

The large difference in position and attitude errors ob-
served in test case (b) implies that the use of a momentum
wheel provides an especially large disturbance rejection
improvement when the disturbances are large enough to
cause the thrust forces of a standard quadcopter to saturate.
The lack of thrust saturation implies that the vehicle with
the spinning momentum wheel could reject even larger
disturbances than the 0.186Nms torque impulse without a
significant increase in position and attitude error. Further-
more, these results suggest that vehicles carrying heavier
payloads may expect to see a larger benefit from the added
angular momentum due to their thrust forces being closer to
saturation.

The step response of the vehicle to a change in desired
horizontal position confirms that the vehicle retains the
majority of its agility when the momentum wheel is spinning.
This implies that a control strategy involving slowing the
wheel before performing simple maneuvers is unnecessary.
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(a) Collision with 67 g ball (0.092Nms torque impulse)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

H
o
ri

zo
n
ta

l
E

rr
o
r

[m
] ωG = 0 rad/s

ωG = 468 rad/s

−0.4

−0.3

−0.2

−0.1

0.0

0.1

V
er

ti
ca

l
E

rr
o
r

[m
]

0
10
20
30
40
50
60
70

T
il
t

A
n
g
le

[d
eg

]

−30
−20
−10

0
10
20
30

Y
a
w

E
rr

o
r

[d
eg

]

0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

0
1
2
3
4
5
6
7
8

T
h
ru

st
R

a
n
g
e

[N
]

fPi,max

(b) Collision with 135 g ball (0.186Nms torque impulse)

Fig. 5. Responses to torque impulse caused by collision with steel ball dropped from 1m. The tilt angle is defined as the angle between zE
B and the

vertical, and the thrust range is defined as the minimum range that contains all four thrust forces. When the wheel is stationary, the propeller thrust forces
do not saturate after the 0.092Nms torque impulse, but do saturate after the 0.186Nms torque impulse. When the wheel is spinning, the propeller thrust
forces do not saturate during either test. The thrust range at hover is slightly larger when the wheel is spinning due to drag forces acting on the wheel.
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Fig. 6. Disturbance rejection with and without added angular momentum. The top series of images shows the quadcopter reacting to a mid-air collision
with a 135 g ball (0.186Nms torque impulse) without the momentum wheel spinning, and the bottom series of images shows the reaction when the
momentum wheel is spinning at 468 rad s−1. Images are spaced 0.2 seconds apart. A video of the experiments is attached to the paper.
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Fig. 7. Response to 1.5m step change in desired hover position with and
without the momentum wheel spinning. The additional angular momentum
does not significantly affect the maneuverability of the vehicle.

An additional 11W of mechanical power was required to
lift the momentum wheel, and 4.7W of mechanical power
was required to spin the wheel at 468 rad s−1, corresponding
to a 27% increase in power consumption compared to a vehi-
cle without the wheel. Note, however, that the experimental
vehicle was not designed to optimize power consumption,
meaning that a significantly lower power consumption could
be attained by reducing the mass and drag forces acting on
the wheel.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have derived the dynamics for a quad-
copter with an added source of angular momentum, and
have presented a suitable controller that includes an analytic
solution for the LQR optimal attitude control gains. We have
shown that the additional angular momentum can reduce
the state feedback H2 norm of the linearized rotational
dynamics, and have provided a method to choose the size
and speed of the momentum wheel based on an energy bound
approach. Furthermore, we have experimentally shown that
the system can reject torque impulse disturbances better than
a normal quadcopter while maintaining basic agility.

Because the propellers do not reach the maximum thrust
limit as easily when the additional angular momentum is
added, the augmented vehicle is especially useful in re-
jecting large magnitude torque disturbances. The ability of
the augmented vehicle to reject large torque disturbances
implies that it would be able to survive collisions that a
standard quadcopter would not. Additionally, the effect of the
momentum wheel on the vehicle’s dynamics can be scaled
by changing the angular velocity of the wheel, requiring no

additional mass to be added to the vehicle beyond the mass
of the momentum wheel.

In future work we will investigate using the angular
acceleration of the momentum wheel as an additional control
input and analyze how the disturbance rejection capabilities
of the vehicle scale with the size of the vehicle.
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