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Abstract6

This paper presents a novel type of flying vehicle called the Monospinner, which has only one moving part,7

the propeller, and is yet able to hover and fully control its position. Its translational and attitude dynamics8

are formulated as a twelve-dimensional state space system, which may be linearized to a linear time-invariant9

system amenable to controllability analysis, controller synthesis, and vehicle design. It is shown that the10

linearized system may be both horizontally and vertically controllable in position after removing its yaw11

state, and in particular, this is shown for the case of a vehicle with the shape of a planar object and an12

offset thrust location (with respect to its center of mass). The vehicle’s mass distribution is designed based13

on two robustness metrics: the ability to maintain hover under perturbations by means of Monte-Carlo14

nonlinear simulation, and the probability of input saturation based on a stochastic model. Experiments are15

conducted for the resulting vehicle and controller. The equilibrium of the resulting system has a large region16

of attraction such that it recovers after being thrown into the air like a frisbee.17

Keywords: Unmanned aerial vehicle, Highly underactuated flying vehicles, Controllability analysis of an18

unmanned aerial vehicle, Design of a highly underactuated flying vehicle, Control design of a highly19

underactuated flying vehicle20

1. Introduction21

Highly underactuated flying vehicles have the advantages of increased reliability and reduced manufac-22

turing and maintenance costs due to their reduced mechanical complexity. At the same time, this also23

leads to increased difficulty in the control of their attitude and position. Therefore, many researchers have24

explored the aerodynamic properties and the mass distributions of different vehicle designs that make the25

system’s attitude passively stable ([1] [2] [3] [4] [5] [6] [7] [8] [9] [10]): if the vehicle in hover is disturbed and26

tilts away or moves sideways, aerodynamic forces will damp out the lateral motion and induce a restoring27

moment, bringing the vehicle’s attitude back to its hover state and its translational velocity to zero. The28

vehicle’s position will not recover to its position before the disturbance, which means that its position is29

not passively stable. While eliminating the need for attitude sensing (onboard sensors such as gyroscope,30

attitude estimation, etc.) and active attitude control, this can limit the vehicle’s maneuverability, as its31

actuators have to counteract these restoring aerodynamic forces and moments to achieve controlled forward32

flight.33

This paper presents a different approach: a highly underactuated vehicle (called the “Monospinner” and34

shown in Fig. 11) is designed without relying on aerodynamic effects (apart from the airframe drag torque35

and the propeller) or attitude passive stability. It has a single moving part (its rotating propeller), and its36
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attitude is stabilized by active feedback control. While attitude sensing is required for the Monospinner,37

active attitude control increases the vehicle’s maneuverability. The vehicle is fully controllable in position. To38

the best of the authors’ knowledge, there exist only two types of vehicles (the other one is the Maneuverable39

Piccolissimo [8]) that are both horizontally and vertically controllable with only one moving part.40

This article includes a formulation of the Monospinner’s translational and attitude dynamics in a twelve41

dimensional state space and its corresponding equilibrium. With the linearized system matrices at hand,42

the system is analyzed as a whole and its controllability leads to a definitive answer to whether the vehicle43

is controllable in position. It is shown that the full twelve state system is not stabilizable for any vehicle44

configuration. However, the system may be fully controllable in position after removing the yaw state,45

as it does not affect the dynamics of other states. This reduced eleven state system is thus investigated.46

Specifically, three types of vehicle configuration under simplifying assumptions are analyzed, giving guidelines47

for the mechanical design of the vehicle. A linear, time-invariant controller is designed to control the hovering48

vehicle, and a vehicle design is found by optimizing mainly for the vehicle’s mass distribution. Two robustness49

metrics are chosen: the ability to maintain hover under perturbations and the probability of input saturation50

based on a stochastic model. Experimental results showed that the resulting vehicle is not only able to hover,51

but also has a large region of attraction such that it recovers after being thrown into the air like a frisbee.

30 cm

Figure 1: The Monospinner is approximately 30 cm in size, the frame consists of five carbon-fiber plates, and the electronics
are mounted in an aluminium cage. The carbon fiber rods help to protect the propeller during landing. A more detailed list of
components is given in Table 1.

52

1.1. Related work53

A vehicle similar to the Monospinner is the Maneuverable Piccolissimo: it also features only one moving54

part (the propeller) and one actuator and is yet fully controllable in position. While aiming for small size (the55

vehicle is 39 millimeters in its largest dimension and 4.47 grams in weight), the authors designed the vehicle’s56

mass distribution and relative rotor speed to achieve passive stability in attitude. With an offset between its57

thrust location and the center of mass, the whole body rotates in the air with a small tilt angle. Horizontal58

control is achieved by modulating its thrust at a rate of once per body revolution and thus creating net59

moments and forces that control its roll, pitch and position.60

Highly-underactuated flying machines can be categorized into several subgroups: The first category is the61

samara-type vehicle, which can be traced back to the 1950’s [11] and is also referred to as the Monocopter.62

Inspired by the maple seed (or samara), the vehicle’s whole body is similar to that of a samara or a single63

wing and rotates around the vertical axis during flight. Rotation is usually achieved by the thrust produced64

by a propeller mounted at one end of the body, and the lift created by this rotation counterbalances the65

vehicle’s weight. Through proper vehicle design, Monocopters become passively stable in attitude [12] and66
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can hover for a trimmed open loop control input. With a servo-driven control surface installed on the wing,67

they may be controllable in the horizontal plane. Thus, they require two actuators to be fully controllable68

in position. Notable references are [2] [3] [4] [5] [6] [7], which focused on aspects related to the modeling,69

design, and control of the Monocopters. A more detailed study and modeling on the Monocopter’s system70

dynamics, especially regarding its aerodynamic properties, can be found in [13] and [14].71

Vehicles in the second category are equipped with one actuator (a rotating propeller), providing thrust72

in the vertical direction and inducing body rotation around the vertical axis, while aerodynamic dampers73

are installed to make sure that they are passively stable in attitude. The thrust produced goes through the74

center of mass and can only control the height of the vehicle. Such vehicles are presented in [1] [8], while75

similar vehicles exist as toys, for example the Air Hogs Vectron [15] or Flower Flutterbye Fairy [16].76

The third category is the flapping-wing flying vehicle. Biologically inspired, their main propulsion comes77

from the flapping of a pair of wings, and aerodynamic dampers are often installed to ensure passive attitude78

stability. In [9], [10], the presented flying vehicles have one actuator and are only controllable in height. In79

[17], [18], [19], the flying vehicles have at least two actuators to achieve controlled forward flight.80

Traditional small scale helicopters are not passively stable in attitude and require servo-controlled swash-81

plates for attitude control, which results in at least three actuators. In [20], the authors presented a coaxial82

helicopter that uses only two actuators to control the vehicle’s roll, pitch, and yaw orientation, as well as83

maneuvering thrust. For roll and pitch control, one actuator uses a pair of passively hinged airfoil blades84

to mimic a conventional helicopter’s cyclic control and generate torque around the roll and pitch axes. The85

other actuator is equipped with a conventional fixed-pitch propeller, and thrust and yaw control are achieved86

by the collective thrust and the differential propeller reaction torque of these two actuators. In [1], the author87

presented a prototype called the UNO that uses the same passive hinge mechanism to achieve horizontal, roll,88

and pitch control. It has one actuator (the motor) and three moving parts (the passively hinged propeller).89

Another category is the flying vehicle with no moving parts. These are actuated by an ionic jet engine,90

which produces thrust by emitting positively charged ions and harvesting momentum from their collisions91

with a neutral fluid. In [21], a robotic airfish with an ionic jet and plasma ray propulsion system is presented.92

However, there is little information about its capabilities. In [22], the flying vehicle presented has a similar93

configuration to a standard quadrocopter and uses four ion thrusters (thus four actuators) instead of four94

propeller-based thrusters. Simulation shows controlled flight, and the vehicle prototype is able to have an95

open-loop, uncontrolled takeoff. Another class of vehicles with arguably no moving parts are spacecraft96

operating only under thrusters (e.g. lunar landers) – they typically have significant redundancy, with sub-97

stantially more actuators than degrees of freedom, and thus do not fit into the category of underactuated98

vehicles considered in this work.99

Vehicles in the last category have only fixed-pitch propellers with parallel axes of rotation as inputs, and100

they are fully controllable in position. In [23, 24] it is shown that a quadrocopter can maintain flight despite101

the complete loss of two propellers (that is, with only two propellers remaining) and in theory, control102

is possible after the complete loss of three propellers. The Monospinner (one propeller), the Bispinner103

(two propellers) [24], and the Maneuverable Piccolissimo belong to this category. The Monospinner and104

the Bispinner require active attitude control, whereas the Maneuverable Piccolissimo does not, since it is105

passively stable in attitude.106

In [23], the authors derived conditions under which two degrees of freedom in attitude are controllable for107

three different propeller loss cases (that is, complete loss of one, two or three propellers) for a quadrocopter.108

They also derived in [24] a general framework for establishing attitude controllability of the vehicles in the109

last category and investigated a special case where a quadrocopter loses two opposing motors. In [25], a110

controllability test method is developed for multicopter systems with positive thrust constraints and around111

their conventional hover state (zero translational and rotational velocity).112

This paper follows previous work presented at a conference [26] and extends these previous results by113

presenting:114

• a twelve-dimensional state-space system description for the Monospinner, for which an equilibrium115

exists and where techniques from linear time-invariant system theory may be applied for system analysis116

and control design,117
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• a proof that the twelve-dimensional linearized system about hover is not stabilizable for any vehicle118

configuration,119

• controllability analysis of the reduced eleven-dimensional linearized system (with yaw state removed)120

for three special types of vehicle configuration,121

• the experimental results with a controller designed using the proposed linear system model, which122

enables the resulting vehicle to move anywhere in space.123

The remainder of this paper is organized as follows: the dynamic model of the Monospinner is given in124

Section 2, together with a twelve-state system description and its equilibrium solution. A linearized system125

is obtained and a controllability analysis is given in Section 3. A linear controller for the system is derived126

in Section 4, and the vehicle design based on two robustness metrics is discussed in Section 5. The resulting127

vehicle is presented in Section 6. Experimental results including two types of takeoff are shown in Section 7,128

followed by a conclusion given in Section 8.129

2. Modeling and dynamics130

This section provides the dynamic model for analysis and control of the Monospinner, followed by the131

discussion of the hover equilibrium of the resulting twelve-state system.132

2.1. Dynamic model133

This model is the same as the one given in [26] and summarized here for the sake of completeness. Fig. 2134

shows some of the salient forces and quantities used in this section. The vehicle has a total mass m, and the135

gravity vector is denoted as g. Boldface symbols like g are used throughout the paper to denote vectors in136

three-dimensional space. The propeller produces a thrust force of magnitude fP in the direction of the unit137

vector nP . The position of the vehicle’s center of mass with respect to a point fixed in the inertial frame is138

denoted as s.139

Two coordinate systems are used for the modeling: an inertial (ground-fixed) coordinate system E and140

a body-fixed coordinate system B. A vector expressed in a specific coordinate system is indicated by a141

superscript, for example gE expresses g in coordinate system E. The body-fixed coordinate system B is142

oriented such that the motor arm (Fig. 2) is parallel with its x-axis and the propeller axis of rotation is aligned143

with its z-axis. The propeller force vector nB
P is then (0, 0, 1). The notation (0, 0, 1) is used throughout this144

paper to compactly express the elements of a column vector.145

The translational dynamics of the vehicle, expressed in the inertial frame E, are captured by Newton’s146

law:147

s̈E = m−1nE
P fP + gE (1)148

where it is assumed that the vehicle travels at low translational velocities, such that translational drag forces149

(such as those described in [27]) are neglected.150

Let IP denote the moment of inertia of the propeller (referred to the spin axis), and let IB + IP denote151

the total moment of inertia of the vehicle (with respect to its center of mass). The vehicle rotates at an152

angular velocity ωBE with respect to the coordinate system E, where the subscript BE means the relative153

velocity of coordinate system B with respect to E. The propeller is located at a displacement rP with154

respect to the center of mass, and its angular velocity with respect to the coordinate system E is denoted as155

ωPE . Besides the thrust fP , the propeller also experiences a torque of magnitude τP in the propeller thrust156

direction nP due to the aerodynamic drag acting on the propeller blade, which is transmitted to the body157

through the motor. The vehicle experiences an airframe drag torque τd due to the rotation of the vehicle in158

the air.159

The angular dynamics of the system, expressed in the body-fixed coordinate system B, are formulated160

as:161

IB
B ω̇B

BE + IB
P ω̇B

PE + JωB
BE×K(IB

BωB
BE + IB

P ωB
PE) = JrBP×KnB

P fP + nB
P τP + τB

d (2)162
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where Ja×K represents the skew-symmetric matrix form of the cross product, so that Ja×Kb = a×b for any163

vectors a and b in R3.164

Without loss of generality, it is assumed that the propeller is left-handed. The propeller’s scalar speed Ω165

with respect to the body is usually controlled by an electronic speed controller, so that166

ωB
PB = (0, 0,−Ω). (3)167

Note that ωB
PE in (2) can be decomposed as below:168

ωB
PE = ωB

PB + ωB
BE . (4)169

The thrust fP produced from a stationary propeller is then assumed to be proportional to its angular170

velocity ωB
PE squared with the proportional coefficient κf [28]:171

fP = κf (ω
B
PE · nB

P )|ωB
PE · nB

P | (5)172

with · denoting the vector inner product.173

The propeller torque is assumed to be linear in the propeller thrust:174

τP = κfP (6)175

We neglect any potential torque effects due to blade flapping [29] or the propeller H-force [27].176

It is assumed that the magnitude of the airframe drag torque τd is quadratic in the vehicle’s angular177

velocity ωB
BE [24]:178

τB
d = −

∥∥ωB
BE

∥∥KB
d ωB

BE (7)179

where ‖·‖ denotes the Euclidean norm and Kd is a 3× 3 matrix and assumed to be diagonal when expressed180

in the coordinate system B, which is denoted by181

KB
d = diag (Kd,xx,Kd,yy,Kd,zz) . (8)182

It is assumed that the different propeller speeds near the operating point discussed in the paper are not183

significant enough to make a difference in the drag torque that the vehicle experiences. Therefore it is184

assumed that the propeller’s contribution to the drag torque is constant and implicitly included in (7).185

2.2. Hover solution186

Similar to Section 2.1, the Monospinner’s hover solution is derived in [26] and summarized here for the187

sake of completeness. This hover solution follows the definition of the “relaxed hover solutions” [24], which188

are defined as solutions that are constant when expressed in a body-fixed reference frame and where the189

vehicle remains substantially in one position. Specifically, these solutions allow the vehicle to have a non-zero190

translational acceleration (but it must average to zero) and a non-zero angular velocity.191

In hover, the Monospinner’s center of mass has a uniform circular motion and stays at a constant height,192

while the vehicle body is rotating at a constant angular velocity ω̄B
BE in the parallel direction of gravity.193

Note that the overbar in this paper is always used to denote quantities that are constant in hover (i.e. the194

equilibrium solution). Also, a body-fixed unit vector na exists, which does not change when expressed in195

the coordinate system E. This vector may be thought of as an averaged thrust direction of the vehicle: in196

hover it is aligned with the thrust vector averaged over one rotation. Note that the instantaneous thrust197

direction may not be aligned with gravity.198

Furthermore, the vector na is parallel to ω̄BE :199

nB
a =

ω̄B
BE

ω̄
, (9)200

where ω̄ is the magnitude of the equilibrium angular velocity
∥∥ω̄B

BE

∥∥.201
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eEy

eEx

eEz

fPnP · nanP fP
τP

τd

eBx
eBz

eBy

mg

Figure 2: Monospinner in flight, showing some of the symbols and quantities required to model the system.

The equilibrium propeller force nB
P f̄P can be decomposed into horizontal and vertical forces, where the202

horizontal force induces the circular motion and the vertical force compensates for the vehicle’s weight. Thus203

f̄Pn
B
P · nB

a = m ‖g‖ . (10)204

Substituting (9) into (10) yields the following solution for the equilibrium thrust205

f̄P =
m ‖g‖ ω̄
nB

P · ω̄B
BE

. (11)206

In hover (i.e. setting the derivatives to zero), (2) becomes:207

Jω̄B
BE×K(IB

B ω̄B
BE + IB

P ω̄B
PE) = JrBP×KnB

P f̄P + nB
P τ̄P + τ̄B

d . (12)208

Note that the quantities ω̄B
PE , f̄P , τ̄P and τ̄B

d are uniquely defined by Ω̄ and ω̄B
BE (see (3), (4), (5), (6),209

(7)), such that we have four equations in four unknowns. The hover solution is therefore defined by the Ω̄210

and ω̄B
BE that solve (11)-(12). With the resulting Ω̄ and ω̄B

BE (if they exist) all other quantities in hover211

(such as nB
a or f̄P ) may be calculated.212

2.3. Equilibrium213

In this section two frames (see Fig. 3) are introduced: a body frame convenient for the controllability214

analysis and control design, and a rotating reference frame for obtaining attitude equilibrium. Translational215

and attitude equilibrium is solved using the hover solution in Section 2.2.216

2.3.1. Attitude equilibrium217

For convenience, a body-fixed C-frame is introduced such that218

nC
a = RCBnB

a = (0, 0, 1) (13)219
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ω̄

eEx

eEy

eEz = eLz

eLy

eLx

eCz

eCy

eCx

eBx

eBy

eBz

na

Figure 3: This figure illustrates the two frames introduced in Section 2.3: the body-fixed C-frame is introduced such that the
body-fixed unit vector na is aligned with its z-axis, and the propeller force vector nC

P has no y-component. The L-frame rotates
at a constant angular speed ω̄ around the gravity vector and therefore the z-axis of the inertial frame E.

Note that (13) remains valid if the C-frame rotates around its z-axis. This degree of freedom may be220

fixed by the constraint that the propeller thrust direction nC
P has no y component when expressed in the221

C-frame, that is,222

nC
P = RCBnB

P
!
= (∗, 0, ∗). (14)223

224

Let (p, q, r) := ωC
CE be the body rates expressed in the C-frame. By (9) and (13) the body rates225

equilibrium ω̄C
CE is226

ω̄C
CE = ω̄C

BE = RCBω̄B
BE = RCBnB

a ω̄ = (0, 0, ω̄). (15)227

In other words, at equilibrium the body-fixed C-frame is rotating at a constant angular speed ω̄ about the228

gravity vector and the yaw angle between the C and the E-frame increases linearly with time. In order to229

have a constant yaw equilibrium, a frame L rotating at a constant angular speed ω̄ around the gravity vector230

is introduced with231

ωL
LE = (0, 0, ω̄). (16)232

Then the vehicle’s orientation may be represented by RCL, which relates the body-fixed frame C and the233

frame L. We parametrize the rotation matrix RCL through the Euler Yaw-Pitch-Roll sequence, following234

the common aerospace convention [30], with φ (roll), θ (pitch), and ψ (yaw):235

RCL = Rx(φ)Ry(θ)Rz(ψ) (17)236

where237

Rx(φ) =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 (18)238
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239

Ry(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (19)240

241

Rz(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 . (20)242

In hover, it is clear from (15) and (16) that there is only a constant yaw offset (the equilibrium yaw angle)243

between the C-frame and the L-frame. Therefore, the equilibrium pitch and roll angles are both zero, that244

is, θ̄ = φ̄ = 0. Note that the equilibrium yaw angle (ψ̄) depends only on the choice of the initial yaw between245

the L and E-frame and is therefore set to zero without loss of generality. The rotation matrix RCL may246

alternatively be parametrized with a 3-1-3 Euler angle sequence, consisting of spin, nutation, and precession247

[31]. This parametrization is popular for describing spinning bodies, but is less useful than the proposed248

yaw-pitch-roll sequence as it has a singularity at the equilibrium with zero nutation angle.249

2.3.2. Translational equilibrium250

Since in hover the center of mass of the vehicle is rotating in a circle at a constant height, its horizontal251

position and velocity are oscillatory when expressed in the inertial frame. Thus, the position and velocity252

states are expressed in the body frame C, and their dynamics are obtained by applying Euler’s transformation253

on the position vector s and velocity vector v:254

ṡC = vC − JωC
CE×KsC (21)255

v̇C = RCE(s̈)E − JωC
CE×KvC (22)256

=
1

m
nC

P fP +RCEgE − JωC
CE×KvC (23)257

258

where v := ṡ and (1) is substituted into (22).259

Setting (23)’s left hand side to zero and substituting the hover solution into the equation yields260

0 =
1

m
nC

P f̄P + R̄CEgE − Jω̄C
CE×Kv̄C . (24)261

262

Recall that in hover the C-frame rotates about the gravity vector, thus R̄CEgE = gE . Substituting the263

body rates equilibrium solution (15) and solving (24) yields264

v̄Cy = −
f̄P n

C
P,x

ω̄m
, v̄Cx =

f̄P n
C
P,y

ω̄m
= 0, (25)265

where (nCP,x, n
C
P,y, n

C
P,z) := nC

P , (v̄Cx , v̄Cy , v̄Cz ) := v̄C . The equilibrium state v̄Cx is equal to 0 since nCP,y is zero266

according to (14).267

Setting the left hand side of (21) to zero, substituting the hover solution into it, and solving the equation268

yields:269

v̄Cz = 0, s̄Cy = − v̄
C
x

ω̄
= 0, s̄Cx =

v̄Cy
ω̄

= −
f̄P n

C
P,x

ω̄2m
, (26)270

where (s̄Cx , s̄
C
y , s̄

C
z ) := s̄C .271

Note that s̄Cz does not appear in the equilibrium equations and is set to zero without loss of generality.272

The fact that the horizontal position equilibrium s̄Cx and s̄Cy cannot be set arbitrarily is simply a feature of273

choice of the state and the coordinate system it is represented in.274

8



2.3.3. Equilibrium solution275

In conclusion, the twelve-state equilibrium (s̄Cx , s̄
C
y , s̄

C
z , v̄

C
x , v̄

C
y , v̄

C
z , φ̄, θ̄, ψ̄, p̄, q̄, r̄) is:276

s̄Cx = −
f̄P n

C
P,x

ω̄2m
, s̄Cy = 0, s̄Cz = 0

v̄Cx = 0, v̄Cy = −
f̄P n

C
P,x

ω̄m
, v̄Cz = 0,

φ̄ = 0, θ̄ = 0, ψ̄ = 0,

p̄ = 0, q̄ = 0, r̄ = ω̄.

(27)277

278

3. Linearized system and controllability analysis279

In this section, the attitude kinematics for the Euler angles (φ, θ, ψ) that were introduced earlier are280

derived. The resulting twelve-state dynamic system is linearized about hover and the controllability analysis281

is subsequently given.282

3.1. Linearization283

The angular rates ωC
CL and the rates of the Euler angles (φ̇, θ̇, ψ̇) have the following relationship [30]:284

ωC
CL =

φ̇0
0

+Rx(φ)

0θ̇
0

+Rx(φ)Ry(θ)

0
0

ψ̇

 , (28)285

the inverse mapping of which (that is, the mapping from ωC
CL to (φ̇, θ̇, ψ̇)) has the following form:286 φ̇θ̇

ψ̇

 =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)

ωC
CL (29)287

Note that288

ωC
CL = ωC

CE − ωC
LE = ωC

CE −RCLωL
LE (30)289

Substituting (30) into (29) yields290 φ̇θ̇
ψ̇

 =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)

ωC
CE +

 sin(θ)ω̄
− sin(φ) cos(θ)ω̄
− cos(θ) cos(φ)ω̄

 (31)291

Introducing the state deviation from the equilibrium defined in (27)292

x = (δsCx , δs
C
y , δs

C
z , δv

C
x , δv

C
y , δv

C
z , δφ, δθ, δψ, δp, δq, δr), (32)293

defining the control input u as deviation of the motor force from the equilibrium motor force f̄P , and294

linearizing the system dynamics ((21), (23), (31) and (2)) about the equilibrium yield a linear, time-invariant295

(LTI) system:296

ẋ ≈ Ax+Bu. (33)297

Substituting the equilibrium solution φ̄ = θ̄ = 0 into (33) (ψ̄ does not appear in the linearization), the system298

matrices A and B become299

A =


−Jω̄C

CE×K I3 0 Js̄C×K
0 −Jω̄C

CE×K −JgE×K Jv̄C×K
0 0 −Jω̄C

CE×K I3
0 0 0 AC

S

 , B =


0

m−1nC
P

0
BC

S

 . (34)300
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Every entry of A in the above expression denotes a 3 by 3 matrix and every entry of B denotes a 3 by 1301

matrix. AC
S and BC

S denote the linearization matrices of the Euler equation (2), and I3 is an identity matrix302

of dimension 3. Note that the appearance of s̄Cz in the system matrix A comes from the fact that the position303

state is formulated in the body frame. It does not, however, affect the controllability of the system pair (see304

Section 3.2.2, s̄Cz does not appear in the matrices in (37), (38), and (39)).305

3.2. Controllability analysis306

In this section, controllability analysis for the linearized system is conducted to gain intuition of when307

it is possible to control the Monospinner. It will be shown that the full twelve-state system (from now on308

referred to as the full state system) is never stabilizable2 , and the controllability test of the reduced eleven309

state system (with yaw state removed and from now on referred to as the reduced state system) is equivalent310

to the full rank tests of at most five matrices (two 4×4 matrices and three 3×4 matrices). The controllability311

analysis of three special cases for the reduced state system is subsequently given.312

3.2.1. The full state system313

Note that the matrix A in (34) is an upper block diagonal matrix. The spectrum of A is therefore the314

union of the spectra of the diagonal block matrices, that is,315

spec(A) = spec(Jω̄C
CE×K) ∪ spec(AC

S ) (35)316

The spectrum of the skew-symmetric matrix Jω̄C
CE×K is {ω̄i,−ω̄i, 0}, with i denoting the imaginary unit.317

The eigenvalues of A are then divided into three categories: 0, ±ω̄i and the eigenvalues of AC
S .318

For a linear, time-invariant system, one could apply the Popov-Belevitsch-Hautus (PBH) test to investi-319

gate its controllability (Corollary 12.6.19, [33]), the pair (A,B) is controllable if and only if for all eigenvalues320

λ of A, the concatenated matrix [λI−A B] ∈ C12×13 has full rank. This includes the case of eigenvalue 0,321

where the test matrix has the form [−A B]. Note that the third and the ninth column of the matrix A are322

zero vectors, meaning that the concatenated test matrix [−A B] has at most rank 11 and therefore does not323

have full rank. The pair (A,B) is thus not stabilizable. Note that including the translational drag forces324

(such as those described in [27]) in (23) would not change the system’s stabilizability, as they do not depend325

on the yaw and height of the vehicle and thus this does not change the rank of the test matrix [−A B].326

3.2.2. The reduced state system and equivalent controllability tests327

Rearranging the states in (32) (moving the yaw state δψ to the last state) yields:328

Ã =

[
A11 0
A21 0

]
, B̃ =

[
B1

0

]
(36)329

with A11 ∈ R11×11, A21 ∈ R1×11, B1 ∈ R11×1 and 0 being the zero matrix with associated dimension. From330

(36), it can be seen that the yaw state does not affect the dynamics of other states.331

Furthermore, changing the yaw state (the yaw angle between the L and the C-frame) in hover would332

not affect the direction of the averaged thrust, and therefore not the roll angle, pitch angle, and position333

in the inertial frame. This motivates investigating the controllability of the system without the yaw state,334

that is, the system matrix pair (A11, B1). Stabilizability of this reduced state system implies the ability of335

the system to maintain a relaxed hover solution while rejecting disturbances, remaining substantially at one336

point in space (though the yaw angle may not be able to simultaneously achieve some setpoint. Note that337

the stabilizability of the reduced system also implies that the yaw rate of the vehicle stays bounded.338

2In this article, controllability of an LTI system is defined to mean that for any initial state, there exists a control trajectory
such that the system can be steered from that state to 0 in finite time, whereas stabilizability is defined to mean that for any
initial state, there exists a control trajectory such that the system state converges to zero as time goes to infinity [32].
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The PBH test is then applied to the reduced system matrix pair (A11, B1). Applying the algebra outlined339

in Appendix A, it is revealed that for the eigenvalue 0, the matrix [−A11 B1] has full rank if and only if the340

matrix U0 ∈ R4×4 has full rank, where341

U0 =

[
V0 −(AC

S )
>

m−1nCP,z (BC
S )>

]
(37)342

with V0 = (v̄Cy , 0, 0).343

Similarly, for the eigenvalues ±ω̄i, since [ω̄iI − A11 B1] and [−ω̄iI − A11 B1] have the same rank (Fact344

2.19.3, [33]), it suffices to investigate [ω̄iI −A11 B1], which has full rank if and only if the matrix Ui ∈ C4×4
345

has full rank (Appendix A), where346

Ui =

[
Vi ω̄iI − (AC

S )
>

0 (BC
S )>

]
(38)347

with Vi = (1,−i, 0).348

Finally, for the eigenvalues of AC
S , assuming that its eigenvalues are distinct from 0 and ±ω̄i (otherwise349

we can check the rank of U0 or Ui), its associated full rank tests are equivalent to the test of whether or not350

the matrix Us(λ) : C 7→ C3×4 has full rank (Appendix A), where351

Us(λ) =
[
λI −AC

S BC
S

]
(39)352

with λ ∈ spec(AC
S ).353

In summary, the system pair (A11, B1) is stabilizable if and only if U0, Ui have full rank, and Us(λ) has354

full rank for the eigenvalues of AC
S whose real part is non-negative. Also note that obtaining the matrices355

AC
S and BC

S symbolically is nontrivial, since it requires the knowledge of the equilibrium solution to define356

the C-frame, and solving the nonlinear equations (11)-(12) symbolically for the equilibrium is in most cases357

very tedious, if not impossible.358

3.2.3. Special cases for the reduced state system359

In this section, special cases under simplifying assumptions are investigated to provide intuition of when360

the reduced state system matrix pair (A11, B1) is stabilizable. This may be useful since if the system is361

stabilizable for the simplified system equations, then it will be stabilizable for the actual system, provided that362

the modeling error is small enough. This stems from the fact that the eigenvalues of a matrix are continuous363

functions of its elements (Fact 10.11.9, [33]) that are also locally continuous at the model parameters.364

Therefore, the PBH test matrix does not lose rank for a perturbation of the system matrices that is small365

enough. Conversely, if the system is not stabilizable for the simplified system equations, it may still be366

stabilizable for the actual system, but it is very likely that large control efforts would be required to stabilize367

it.368

First, it is assumed that the terms IB
P ω̇B

PE and IB
P ωB

PE are negligible. For a typical vehicle design (that369

is, the vehicle is roughly the size of a quadrocopter described in [34]), the largest component of the propeller370

moment of inertia IB
P (the moment of inertia around its body z-axis) is two orders of magnitude smaller than371

the smallest diagonal entries of the vehicle moment of inertia IB
B , and the equilibrium angular momentum372

term IB
P ω̄B

PE is an order of magnitude smaller than IB
B ω̄B

BE . The Euler equation (2) thus becomes373

IB
B ω̇B

BE + JωB
BE×KIB

BωB
BE = JrBP×KnB

P fP + nB
P τP + τB

d . (40)374

It is also assumed that the vehicle’s angular velocity with respect to the inertial frame is much smaller than375

the propeller’s angular velocity with respect to the body, i.e., ‖ωBE‖ � ‖ωPB‖, so that fP is not a function376

of the body rates.377

The following three special cases are then investigated:378
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Figure 4: A possible shape of the vehicle in the special case 1 of the controllability analysis for the reduced state system. It is
a planar object with an offset thrust location.

Case 1379

It is first assumed that the vehicle is a planar object (Fig. 4). The perpendicular axis theorem applies380

then, that is, for a coordinate system where the object is lying in the xy-plane, the sum of the moments of381

inertia about axis x and y is equal to the moment of inertia about axis z. Furthermore, the vehicle’s inertia382

matrix is assumed to be diagonal in the B-frame. In summary, IB
B = diag (Θx,Θy,Θx +Θy).383

It is assumed that the propeller thrust location has a positive offset to the center of mass, that is,384

rBP = (l, 0, 0), with l being positive. It is also assumed that the vehicle’s equilibrium pitch and roll rates are385

small, such that the airframe drag torque around the body x and y-axes is neglected:386

τB
d = (0, 0,−KrB |rB |), (41)387

where K is a positive constant and rB is the yaw rate in the B-frame. In a typical vehicle design, it is found388

that the terms Jω̄B
BE×KIB

B ω̄B
BE and JrBP×KnB

P f̄P are at least an order of magnitude larger than the airframe389

drag torque around the body x and y-axes. A further reason for this assumption is that, intuitively, for such390

a fast, almost flat wobbling planar object, the gyroscopic effect and the offset propeller thrust dominate the391

roll and pitch rate dynamics, whereas the propeller torque has to be counterbalanced by the airframe drag392

torque in the body z-axis.393

It is shown that in this case the reduced system matrix pair (A11, B1) is always stabilizable (see Appendix394

B.1). This implies that a vehicle of flat shape is a viable choice when designing a Monospinner. A special395

case here is when the vehicle has the shape of a flat plate, that is, IB
B = diag (Θ,Θ, 2Θ). The Maneuverable396

Piccolissimo [8], for instance, has such an inertia distribution.397

Case 2398

It is assumed that the vehicle’s inertia matrix has the form IB
B = diag (Φ,Θ,Θ), and the airframe drag399

matrix expressed in the body frame B has the form KB
d = diag (J,K,K), where Φ, Θ, J , and K are non-400

zero. Here the vehicle’s equilibrium pitch and roll rates may not be small, thus the aerodynamic effects in401

the pitch and roll axes cannot be neglected. As in case 1, it is assumed that the thrust location rBP is equal402

to (l, 0, 0) with positive l. This corresponds to the case where the vehicle has the shape of a cylinder and403

the thrust location is aligned with its center axis (Fig. 5). Note that this case also includes the special case404

that the vehicle’s mass distribution is symmetric, that is, IB
B = diag (Θ,Θ,Θ) (e.g. a sphere or cube).405
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Figure 5: A possible shape of the vehicle in the special case 2 of the controllability analysis for the reduced state system. It has
the shape of a cylinder and the thrust location goes through the cylinder’s center axis.

It can be proved that the reduced state system is not stabilizable, since the PBH test matrix associated406

with the eigenvalues on the imaginary axis does not have full rank (see Appendix B.2). Intuitively, the407

cross-coupling term (the term JωB
BE×KIB

BωB
BE in the Euler equation) in the x-axis disappears due to the408

structure of the inertia matrix, so that the roll rate dynamics can be hardly influenced by other states.409

In addition, the propeller thrust only creates moment around the pitch axis. The reduced state system is410

therefore not stabilizable. This indicates that when designing a Monospinner, the design should avoid to411

have an inertia matrix similar to the one given in this case.412

Case 3413

In this case, the propeller thrust location rP is assumed to be equal to (0, 0, 0). Assume the vehicle’s414

inertia matrix has the form IB
B = diag (Θx,Θy,Θz). Then one equilibrium of this special case is p̄B =415

0, q̄B = 0, r̄B =
√
κf̄P /Kd,zz, where (p̄B , q̄B , r̄B) := ω̄B

BE . It can be shown that the linearized reduced state416

system around this equilibrium is uncontrollable (Appendix B.3).417

This is also intuitively easy to see, namely, due to the lack of the cross-coupling term in hover and the418

term JrBP×KnB
P fP in the x and y-axis, the control input could influence the yaw rate dynamics, but not the419

roll and pitch rate dynamics. This indicates that when designing a Monospinner, the thrust location should420

not be too close to the center of mass.421

4. Control strategy422

The above analysis indicates that by giving up the control of yaw, the reduced state system may be423

stabilized by a state feedback controller. Recall that the vehicle’s position can still be controlled.424

Furthermore, the motor dynamics may have a large influence on the system, if the time constant of their425

response to commands is comparable to the time constants of the remainder of the system. For this reason426

the motor force is also included as a state, and is approximated by a first order system with time constant427

τmot:428

ḟP = τ−1
mot(fcom − fP ) (42)429

where fcom is the command thrust for the propeller and fP is the current propeller thrust.430

Augmenting the deviation of the motor force from the equilibrium force (i.e. fP − f̄P ) as a state to the431

reduced state system, denoting the new state as x, and introducing the new control input u := fcom − f̄P ,432

the augmented state system equation is then433

ẋ ≈ Acx+Bcu (43)434
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Note that although the motor force state (or equivalently, the motor speed) represents a degree of freedom435

of the system, including it in the state space or not does not affect the system’s controllability, as the436

motor force is considered directly as the input to the system in the latter case. From now on, it is always437

assumed that the system matrix pair (Ac, Bc) is controllable, such that a stabilizing feedback controller may438

be designed.439

An infinite-horizon linear-quadratic regulator (LQR) [35] may be readily designed with with the cost on440

the position states set to 1m−2 s−1, cost on the roll and pitch states set to 10 rad−2 s−1, cost on the input441

set to 1N−2 s−1, and cost on the rest of the states set to 0, yielding a static feedback gain K:442

u = −Kx. (44)443

The resulting thrust command is then:444

fcom = f̄P + u. (45)445

Note that the controller presented here is different from the one in the conference version [26]: it is a446

single linear controller that regulates both translational and attitude states, whereas the controller in the447

conference version employs a cascaded control scheme that exploits time scale separation. This full state448

control strategy may bring advantages if the desired position dynamics have a similar time constant to the449

desired attitude dynamics. It also allows for the investigation of the stability margin of the closed-loop450

system and addressing the issue of actuator saturation, by designing a model predictive controller that takes451

the input constraint into account while considering the position at the same time.452

5. Design453

Since the system has only limited control authority at its disposal, it is important to find the vehicle454

design that is least sensitive to uncertainties such as parametric uncertainties and measurement noise. This455

section presents the methods to find a vehicle configuration such that the vehicle is sufficiently robust against456

these uncertainties.457

5.1. Simplified mechanical model458

To allow for efficient evaluation, a simplified mechanical model is used for the analysis, where there are459

three major components in the vehicle: the battery, the electronics and the motor (including the propeller).460

The components’ contribution to the composite inertia matrix is approximated as follows: the three major461

components are approximated as point masses and the connecting frame components are approximated as462

thin rods. From the inertia matrix (and by assuming that the vehicle has similar drag coefficients as the463

quadrocopter in [34]), the resulting vehicle’s equilibrium solution and the linearized system matrices can be464

computed as described in the preceding sections.465

By measuring the weights of the available components of the prototype, the battery is taken to have a466

weight of 0.06 kg, the electronics 0.045 kg and the motor 0.04 kg. The connecting rods are taken to have a467

length density of 0.06 kgm−1.468

5.2. Choosing the vehicle configuration469

The vehicle design focuses on optimizing over the vehicle’s mass distribution. One motivation here is470

that a mass distribution where the cross-coupling term (i.e. the gyroscopic effect) dominates in hover would471

make the system’s body rate dynamics more coupled and therefore easier to control.472

The vehicle’s approximate size and shape are based on the existing trispinner [24], with a Y-shape and473

a vehicle diameter of approximately 30 cm. The positions of the battery and the motor are fixed to be two474

vertices of an equilateral triangle, while the position of the electronics is to be determined.475

A two-dimensional grid search of the position of the electronics is then conducted, where two different476

quality metrics are considered. The first is the probability of input saturation and is based on the linear, time-477

invariant model of the dynamic system. The second metric uses Monte Carlo simulations of the nonlinear478
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system, including parameter perturbations and noise, to approximate the probability that the resulting479

vehicle is able to maintain hover. The probability of input saturation may be computed in closed form for480

a given design and is therefore cheap to evaluate, but is less informative than the Monte Carlo simulations.481

5.2.1. Probability of input saturation482

In feedback control, system noise may be amplified into the control input command and cause input483

saturation even if the system is near equilibrium. It is therefore important to know how measurement and484

process noise relates to the actual input force, specifically how likely it leads to input saturation. This is485

particularly true for the Monospinner: with the available motor and propeller, the hover propeller force is486

near saturation (about 75 percent of the maximum available thrust). In the following, a stochastic analysis487

is presented: a discretized version of the linear system is derived and augmented with measurement and488

actuator noise, which is identified by dedicated experiments. The probability that input saturation occurs489

may then be computed in closed-form.490

Discretizing the system (43) with a zero-order-hold on the input u[k] leads to:491

x[k + 1] = Adx[k] +Bdu[k] (46)492

where Ad and Bd are the discretized system matrices.493

The measurement outputs are taken to be those available on the experimental platform, that is, every494

state except the linear velocity. The measurement z[k] is then495

z[k] = Cdx[k] + wmeas[k] (47)496

where wmeas[k] ∈ R9 is the measurement noise, which is assumed to be zero-mean, white, and Gaussian.497

Furthermore, Cd ∈ R9×12 has the form498

Cd =

[
I3 0 0
0 0 I6

]
(48)499

where I3 and I6 are identity matrices with dimension 3 and 6 and 0 is the zero matrix with associated500

dimension. Clearly, the system matrix pair (Ad, Cd) is observable.501

With x̂ defined as the state estimate, a steady-state Kalman filter has the following form:502

x̂[k] = (I12 −KfCd)(Adx̂[k − 1] +Bdu[k − 1]) +Kfz[k] (49)503

where Kf is the filter gain and I12 is the identity matrix with dimension 12.504

The controller input follows from applying the discrete LQR gain Kd. It is also assumed that white,505

Gaussian, and zero-mean actuator noise wact[k] exist and act on the system. The true control input utrue[k]506

is then507

utrue[k] = −Kdx̂[k] + wact[k]. (50)508

Introducing the extended state x̃[k] = (x[k], x̂[k]) and noise w̃[k] = (wmeas[k + 1], wact[k]), substituting509

(50) into (46) yields510

x[k + 1] = Adx[k]−BdKdx̂[k] +Bdwact[k] (51)511

Substituting (51) into (47) and then into (49) leads to512

x̂[k] = KfCdAdx[k − 1] + ((I12 −KfCd)Ad −BdKd) x̂[k − 1] +Bdwact[k − 1] +Kfwmeas[k] (52)513

Combining (50), (51) and (52) and introducing the corresponding extended system matrices Ã, B̃, C̃ and514

D̃, the extended system equations are:515

x̃[k + 1] = Ãx̃[k] + B̃w̃[k] (53a)516

utrue[k] = C̃x̃[k] + D̃w̃[k]. (53b)517
518
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By separation theorem for LTI systems and quadratic cost [35], the extended system (53a) is stable519

with a stable feedback controller and a stable state estimator. Thus, the extended system will reach steady520

state (the equilibrium) as k goes to infinity. Let Pw̃, Px̃ and Putrue
be the variables’ associated steady-state521

covariance matrices (e.g. Px̃ = Var (x̃[k]) for k → ∞). Through the steady state equations of (53a) and522

(53b), the covariance matrices have the following relationship:523

Px̃ = ÃPx̃Ã
T + B̃Pw̃B̃

T (54a)524

Putrue = C̃Px̃C̃
T + D̃Pw̃D̃

T . (54b)525
526

Note that (54a) is a discrete-time Lyapunov equation, for which a solution Px̃ is guaranteed to exist, since527

Ã is discrete-time asymptotically stable, and B̃Pw̃B̃
T is positive semi-definite [33]. Furthermore, since the528

measurement noise variance Pw̃ is measured from experiment, and Ã and B̃ are known, Px̃ can be readily529

solved by (54a). Substituting the solution into (54b) gives the variance of the actuator Putrue
.530

Since the noise w̃[k] is assumed to be Gaussian and zero-mean, utrue[k] is also Gaussian and zero-mean531

at steady state. As a result, the propeller thrust at equilibrium is a Gaussian random variable with mean f̄P532

and variance Putrue , from which the probability of saturating the maximal allowed thrust may be calculated.533

Note that this allows for capturing the fact that a design with low variance may still have a high probability534

of saturation if it has a high mean thrust. In this way the saturation probabilities of varying positions of the535

electronics are computed and shown in Fig. 6, and the results are discussed in the following.
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Figure 6: The probability of the input saturation for one time step for varying positions of the electronics. In the colored area,
a grid search with resolution 0.001 m both in x and y-direction is conducted. Electronics positions for which a hover solution
cannot be solved are marked with hatching (the upper right corner of the color area). Note that the color bar has logarithmic
scale. Note that on the boundary between the regions that has equilibrium solutions and that has no solution, there is a rapid
increase of the input saturation probabilities. This is due to the rapid increase in the equilibrium motor force at this boundary.
The chosen position of the electronics is also plotted.

536

5.2.2. Monte Carlo analysis:537

For each position of the electronics, the nominal hover solution is calculated and an LQR controller is538

designed using the costs given in the preceding section: this controller is denoted as the “nominal controller”.539

Two hundred perturbed vehicles are then generated, by perturbing the following: inertia matrix IB
B , mass540

m, and drag coefficients Kd,xx, Kd,yy and Kd,zz. Each of these parameters is perturbed by sampling within541

a certain percentage range of the nominal value. For each perturbed vehicle a nonlinear simulation based542

on the dynamic model given in Section 2.1 is conducted, lasting 10 simulated seconds. In addition to the543

perturbed parameters, actuator noise and measurement noise are simulated as in (47) and (50).544

The perturbed vehicle starts at the hover equilibrium of the unperturbed system and is controlled by545

the nominal controller. If the vehicle has distance greater than 5m from the reference position at the end of546
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Figure 7: The number of failure cases of vehicles under perturbations in nonlinear simulation for varying positions of the
electronics. In the colored area, a grid search with resolution 0.02 m both in x and y-direction is conducted. Electronics
positions for which a hover solution cannot be solved are marked with with hatching (the upper right corner of the color area).
The chosen position of the electronics is also plotted.

the simulation, it is counted as a failure case. For each candidate position of the electronics, the number of547

failure cases is plotted in Fig. 7. This number is used as an indicator of the robustness of the corresponding548

nominal configuration.549

5.2.3. Discussion550

Note that in both Figs. 6 and 7, there is a good, relatively flat region of electronics positions which have551

a similar small number of failure cases (respectively a low probability of input saturation). The electronics’552

position was chosen as (−0.32,−0.03, 0)m in the coordinate system shown, based on good performance553

in both metrics, and on a compromise with mechanical strength/complexity and the length of the cables554

required to connect the components.555

6. Resulting vehicle556

The resulting vehicle, as shown in Fig. 1, has a mass of 0.208 kg and the moment of inertia as below557

(calculated from a CAD-model):558

IB
B =

103 15 13
15 307 4
13 4 400

× 10−5 kgm2. (55)559

The linearized system matrices are:560

Ac =



0 25.65 0 1 0 0 0 0 0 0 0 0
−25.65 0 0 0 1 0 0 0 0 0 −0.004 0
−0 0 0 0 0 1 0 0 0 0.004 0 0
0 0 0 0 25.65 0 0 9.81 0 0 0.11 −1.30
0 0 0 −25.65 0 0 −9.81 0 0 0 0 0
0 0 0 0 0 0 0 0 −0.11 0 0 4.63
0 0 0 0 0 0 0 25.65 1 0 0 0
0 0 0 0 0 0 −25.65 0 0 1 0 0
0 0 0 0 0 0 0 0 −3.41 −16.64 1.48 −8.95
0 0 0 0 0 0 0 0 19.89 0.64 10.94 −66.19
0 0 0 0 0 0 0 0 0.04 −6.78 −0.53 3.22
0 0 0 0 0 0 0 0 0 0 0 −13.33



(56)561
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Table 1: Components of the Monospinner

Component Name

Propeller GEMFAN GF 8045
Motor T-Motor MN2204-28 KV:1400

Motor controller DYS SN20A
Command radio Laird RM024-S125-M-20
Flight controller Custom-made flight computer

Battery G8 Pro Lite 480mAh 3-Cell/3S 11V

Bc =
[
0 0 0 0 0 0 0 0 0 0 0 13.33

]>
. (57)562

Recall that the state x is563

x = (δsCx , δs
C
y , δs

C
z , δv

C
x , δv

C
y , δv

C
z , δφ, δθ, δp, δq, δr, δfP ), (58)564

and the input is u = fcom − f̄P .565

It can be confirmed that the pair (Ac, Bc) is controllable, and the eigenvalues of the system matrix Ac566

are: {±25.6i, 0,−0.9± 20.0i,−1.6,−13.3}.567

The expected hover solution for this vehicle is568

s̄Cx = 0.0043m, v̄Cx = 0.11m s−1 (59)569

ω̄B
BE = (6.62,−2.04, 24.69) rad s−1 (60)570

f̄P = 2.12N . (61)571
572

Note that s̄Cx = 0.0043m implies that the vehicle’s center of mass is rotating in a circle with a radius of 4573

millimeters.574

Table 1 lists the major components of the Monospinner.575

7. Experimental results576

The experiments are carried out in the Flying Machine Area, an indoor aerial vehicle testbed at ETH577

Zurich [34]. An infrared motion capture system provides high-quality position and attitude measurements578

of the vehicle, which are transmitted wirelessly to the Monospinner at 50 Hz. The full state control of the579

vehicle are run onboard at 1000 Hz. The motor’s electronic speed controller directly measures the motor580

speed, and these measurements are used to estimate the motor force state using (5). The attached video581

shows two types of experiments: take-off from a platform and hand-launching.582

7.1. Take-off from a platform583

Ideally, one would like the Monospinner to start near the equilibrium, especially in terms of its body584

rates: if instead the equilibrium thrust is applied when the vehicle has zero angular velocity (e.g. it is at585

rest on the ground) the vehicle would simply flip over. This is because the cross-coupling term (i.e. the586

gyroscopic effect) and the airframe drag torque are second-order terms in the angular velocity and thus587

negligible. Moreover, the propeller’s pitch torque is larger than its yaw torque due to the vehicle’s geometry:588

the torque to thrust ratio of the propeller is of the order of 1.5 cm, and the propeller thrust moment arm is589

15 cm. Thus, a passive mechanism is designed to allow the Monospinner achieve an angular velocity close590

to its equilibrium before taking off. The mechanism consists of a platform, on which the Monospinner rests,591

18



connected by a bearing to the ground, so that the vehicle can freely rotate about its vector na. The rotation592

is achieved solely through the propeller torque τP , and the thrust is slowly ramped up from zero to the593

equilibrium solution. Once sufficiently close to equilibrium, the full control is switched on and the vehicle594

takes off. A representative state history during a take-off is shown in Fig. 8.
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Figure 8: Experimental results for the Monospinner’s take-off from the platform. The vehicle takes off at 11 s and lands at 20 s.
At time 15 s, a reference position change of 1m is set in the (horizontal) y-direction. Note that at steady-state there is an offset
between the vehicle’s height z and the reference height zref . This is due to the discrepancy between the expected hover solution
and the true hover solution and it may be readily compensated by adding an integral term to the position control. The angular
velocity is plotted as expressed in the body-fixed coordinate system, where ωB

BE = (pB , qB , rB). The roll and pitch angles are
the standard Euler sequence (1,2,3) angles from the E-frame to the B-frame. The attached video shows such an experiment.

595

The equilibrium body rates of the vehicle in hover are as below, which may be compared to the expected596

values in (60) and (61)597

ω̄BE = (6.9,−1.2, 24.8) rad s−1 (62)598

f̄P = 2.12N . (63)599
600

7.2. Hand launch601

Alternatively, the Monospinner can be launched by throwing it like a frisbee. This is a faster method of602

achieving hover than the takeoff mechanism in Section 7.1, and shows that the resulting system’s equilibrium603

has a large region of attraction. A representative state history during a hand-launch is shown in Fig. 9.604
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Figure 9: Experimental results for a successful hand launch of the Monospinner. Its initial angular velocity has about 30%
deviation of the equilibrium angular velocity, and its initial roll and pitch both have about 20 degrees deviation of the equilibrium
roll and pitch. The vehicle is thrown at approximately 2 s, after which the controllers are switched on. The angular velocity
is plotted as expressed in the body-fixed coordinate system, where ωB

BE = (pB , qB , rB). The roll and pitch angles are the
standard Euler sequence (1,2,3) angles from the E-frame to the B-frame. The attached video shows such an experiment.

8. Conclusion605

This paper presents the modeling, design, and control of a flying vehicle with only one moving part606

and a single control input, which is able to fully control its position and may be used as novel hobbyist607

platforms, toys, or low-cost flying vehicles. First, the vehicle’s coupled translational and attitude dynamics608

are formulated as a twelve state system for which an equilibrium exists. This allows for analysis of the609

linearized system using the powerful tools from linear system theory. Then a controllability analysis is610

given: It is shown that the full state system is never stabilizable, and after removing the yaw state, the611

reduced state system maybe fully controllable in position. In particular, the reduced state system is always612

stabilizable for a class of vehicles that has the shape of a planar object and an offset thrust location with613

respect to the center of mass. The resulting vehicle may be approximated by an instance of this class of614

vehicles and its corresponding system matrix pair is shown to be indeed stabilizable. An LQR controller615

for the reduced state system is designed and is shown to work reliably in the experiments. A vehicle design616

method is also presented: it optimizes mainly over the vehicle’s shape and hence its mass distribution, in617

order to find a design that is robust against system noise and parametric uncertainties. Finally, the resulting618

vehicle is shown to be capable of hovering and its equilibrium has a large region of attraction such that the619

vehicle recovers to hover after being thrown into the air like a frisbee. An area of additional investigation620

may be the analysis of the presented linear controller and the determination of the region of attraction of621
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the resulting equilibrium.622
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Appendix A. Equivalent controllability tests for the reduced state system630

In this appendix it will be shown that the matrices [−A11 B1], [±ω̄iI −A11 B1] and [λI −A11 B1] with631

λ ∈ spec(AC
S ) have full rank if and only if the matrices U0 (37), Ui (38), and Us(λ) (39) have full rank,632

respectively.633

According to [36], the system matrix pair (A11, B1) is uncontrollable if and only if there exists a v 6= 0634

with635

v>A11 = λv>, v>B1 = 0, (A.1)636

where λ and its associated left eigenvector v is an uncontrollable mode. Therefore, to determine whether637

the test matrix [λI −A11 B1] has full rank is equivalent to solving for a non-zero solution v in the equation638

v>[λI −A11 B1] = 0 (e.g. if there exists a non-zero v, then the test matrix does not have full rank, and vice639

versa). In the following, the equation will be solved for each eigenvalue of A11, which are 0, ±ω̄i, and the640

eigenvalues of the submatrix AC
S .641

Eigenvalue λ = 0642

Taking the transpose of the matrices on both sides of the equation yields643

[−A11 B1]
>v = 0. (A.2)644

Denote v ∈ R11 by v = [v1, v2, v3, v4] with v1, v2, v4 ∈ R3 and v3 = (v31, v32) ∈ R2. In total, there are 12645

equations.646

Solving the first three equations of (A.2),647

−Jω̄C
CE×Kv1 = 0, (A.3)648

leads to v1 = αω̄C
CE , where α ∈ R.649

The next three equations are650

−v1 − Jω̄C
CE×Kv2 = 0. (A.4)651

Substituting v1 = αω̄C
CE into (A.4) yields α = 0 and thus v1 = 0, and v2 = βω̄C

CE , with β ∈ R.652

From the 7th and the 8th equations it follows that653 [
0 ω̄
−ω̄ 0

] [
v31
v32

]
= 0, (A.5)654

yielding v3 = 0.655

The last four equations are656

Jv̄C×Kv2 − (AC
S )

>v4 = 0 (A.6)657

21



and658

m−1(nC
P )

>v2 + (BC
S )>v4 = 0. (A.7)659

Its solution depends on the entries of AC
S and BC

S , which are functions of the vehicle’s physical parameters.660

In summary, the existence of the solution of (A.2) is equivalent to the existence of the solution of the661

following equation:662 [
V0 −(AC

S )
>

m−1nCP,z (BC
S )>

]
︸ ︷︷ ︸

=:U0

[
v23
v4

]
= 0 (A.8)663

with V0 = (v̄Cy , 0, 0) and v23 denoting the third component of v2. Thus there exists a non-zero solution for664

(A.2) if and only if the matrix U0 does not have full rank.665

Eigenvalue λ = ±ω̄i666

As pointed out in Section 3.2.2, only the case of λ = ω̄i needs to be investigated. The equation to be667

solved is668

[iω̄I−A11 B1]
>v = 0. (A.9)669

Solving the first three equations670 (
iω̄I − Jω̄C

CE×K
)
v1 = 0. (A.10)671

This leads to v1 = (α,−iα, 0), with α ∈ R.672

The next three equations are673 (
iω̄I − Jω̄C

CE×K
)
v2 − v1 = 0. (A.11)674

It follows that α = 0 and thus v1 = 0, and v2 = (β,−iβ, 0), with β ∈ R.675

From the 7th to the 8th equations676 [
0 ‖g‖

−‖g‖ 0

] [
β

−iβ

]
+

[
i 1
−1 i

]
ω̄v3 = 0. (A.12)677

The result follows as β = 0, which leads to v2 = 0, and v3 = (γ,−iγ).678

The last four equations are679 1 0
0 1
0 0

[
γ

−iγ

]
+
(
iω̄I3 −AC

S

)>
v4 = 0 (A.13)680

681

(BC
S )>v4 = 0, (A.14)682

the solution of which depends on the parameters of AC
S and BC

S .683

In summary, the existence of a non-zero solution for (A.9) is equivalent to the existence of a non-zero684

solution for the following equation685 [
Vi ω̄iI − (AC

S )
>

0 (BC
S )>

]
︸ ︷︷ ︸

Ui

[
γ
v4

]
= 0 (A.15)686

where Vi = (1,−i, 0). This is the case if and only if the matrix Ui does not have full rank.687
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Eigenvalues of AC
S688

Recall that it is assumed that the eigenvalues of AC
S are distinct from 0 and ±ω̄i (otherwise we can check689

the rank of U0 or Ui). Therefore, the upper left 9 by 9 block matrix of [λI − A11 B1] has full rank, and it690

suffices to investigate the rank of its lower right 3 by 4 block matrix [λI −AC
S BC

S ] (Fact 2.11.13 [33]).691

Appendix B. Controllability analysis for three special cases of the reduced state system692

In Section 3.2.3, controllability analysis is performed for three special cases of reduced state system under693

simplifying assumptions. In this appendix, details of derivation are shown for each case.694

Appendix B.1. Controllability analysis for case 1695

In this case (for assumptions see Section 3.2.3), we will show that the system is at least stabilizable. Let696

ωB
BE = (pB , qB , rB). Writing out the simplified Euler equation (40) under the proposed assumptions for case697

1 yields698

ṗB = −qBrB (B.1)699

q̇B = pBrB − l

Θy
fP (B.2)700

ṙB =
Θx −Θy

Θx +Θy
pBqB − K

Θx +Θy
r2B +

κ

Θx +Θy
fP . (B.3)701

702

Setting the right hand side of the above three equations to zero yields three nonlinear equations, from703

which the equilibrium body rates (p̄B , q̄B , r̄B) may be solved:704

0 = q̄B r̄B (B.4)705

0 = p̄B r̄B − l

Θy
f̄P (B.5)706

0 =
Θx −Θy

Θx +Θy
p̄B q̄B − K

Θx +Θy
r̄2B +

κ

Θx +Θy
f̄P . (B.6)707

708

Solving the above equations yields:709

p̄B =
l

Θy

√
f̄P
κ
, q̄B = 0, r̄B =

√
κf̄P . (B.7)710

Linearizing (B.1), (B.2) and (B.3) around (p̄B , q̄B , r̄B) and f̄P yields711

AB
S =

 0 −r̄B 0
r̄B 0 p̄B
0 Dp̄B −2kr̄B

 , BB
S =

 0
− l

Θy
κ

Θx+Θy

 . (B.8)712

where713

D :=
Θx −Θy

Θx +Θy
, k :=

K

Θx +Θy
. (B.9)714

From (B.5) and (B.6), BB
S can be written as715

BB
S = (0,− p̄B r̄B

f̄P
,
kr̄2B
f̄P

). (B.10)716
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Let RBC be parametrized by the standard aeronautics Euler angle sequence with roll (ν), pitch (µ), and717

yaw (η) angles such that718

RBC = Rx(ν)Ry(µ)Rz(η). (B.11)719

Combining (9), (13) and (B.11) yields720

p̄B
ω̄

= − sinµ,
q̄B
ω̄

= cosµ sin ν,
r̄B
ω̄

= cosµ cos ν. (B.12)721
722

Since q̄B = 0 and r̄B 6= 0, it can be seen from (B.12) that sin ν is equal to 0, which leads to ν = 0.723

With the second row of (14) the remaining degree of freedom η can be solved:724

cos(ν) sin(µ) sin(η)− sin(ν) cos(η) = 0 (B.13)725

which yields726

η = arctan

(
tan(ν)

sin(µ)

)
= 0. (B.14)727

Therefore, the coordinate transformation from the C-frame to the B-frame is a rotation around the y-axis728

of the C-frame, that is,729

RBC =

cosµ 0 − sinµ
0 1 0

sinµ 0 cosµ

 (B.15)730

and RBCω̄C
CE = ω̄B

BE leads to731

p̄B = − sin(µ)ω̄, r̄B = cos(µ)ω̄. (B.16)732

For brevity, let α = − sin(µ) > 0 (since p̄B > 0) and β = cos(µ) > 0. Note that α2 + β2 = 1.733

Substituting (B.16) into AB
S and BB

S and applying coordinate transformation AC
S = RCBAB

SR
BC and734

BC
S = RCBBB

S yields735

AC
S =

 −2kβα2ω̄ (−β2 −Dα2)ω̄ 2kβ2αω̄
(β2 − α2)ω̄ 0 2βαω̄
2kβ2αω̄ (−βα+Dβα)ω̄ −2kβ3ω̄

 (B.17)736

and737

BC
S =

[
−kβ2αω̄2

f̄P
−βαω̄2

f̄P

kβ3ω̄2

f̄P

]
, (B.18)738

respectively.739

Substituting nCP,z = β, (25), (B.17), and (B.18) into U0 (A.8) and computing its determinant yields740

det(U0) = −2kβ4ω̄3

m
(β2 + α2)2, (B.19)741

which is non-zero, meaning that [−A11 B1] has full rank.742

For the eigenvalues ±ω̄i, (A.15) becomes743

Ui =


1 ω̄i+ 2kβα2ω̄ −(β2 − α2)ω̄ −2kβ2αω̄
−i (β2 +Dα2)ω̄ ω̄i βαω̄ −Dβαω̄
0 −2kβ2αω̄ −2βαω̄ ω̄i+ 2kβ3ω̄

0 −kβ2αω̄2

f̄P
−βαω̄2

f̄P

kβ3ω̄2

f̄P

 . (B.20)744
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To compute its determinant, multiply its fourth row by −2f̄P /ω̄ and add to the third row and then compute745

its determinant yields746

det(Ui) = −iβαω̄
4

f̄P
(−(β2 +Dα2 − 1)). (B.21)747

Assume det(Ui) = 0, then the following equation has to hold748

β2 +Dα2 = 1, (B.22)749
750

simplifying which yields751

Θx −Θy = Θx +Θy, (B.23)752
753

which is clearly a contradiction (Θy 6= 0). Thus, [ω̄iI −A11 B1] has full rank.754

For the eigenvalues of AC
S , the matrix [λI−AC

S BC
S ] has full rank for all λ is equivalent to the controllability755

of the matrix pair (AC
S , B

C
S ) (the PBH test), which is then equivalent to the full rankness of its associated756

controllability matrix757

C =
[
BB

S AB
SB

B
S (AB

S )
2BB

S

]
. (B.24)758

Note that the matrix pair (AB
S , B

B
S ) with substitution from (B.16) is used instead, since coordinate transfor-759

mation (which is the same as change of basis) does not affect the controllability of the linear system matrix760

pair, and it is easier to evaluate the controllability matrix C using the pair (AB
S , B

B
S ).761

Substituting (B.8) into C leads to762

C =
βω̄2

f̄P

 0 βαω̄ −kβ2αω̄2

−α kβαω̄ αω̄2(β2 −Dα2 − 2k2β2)
kβ −(Dα2 + 2k2β2)ω̄ kβω̄2(3Dr22 + 4k2β2)

 . (B.25)763

To compute its determinant, multiply the first and second column by kβω̄ and add it to the second and764

third column, respectively, which yields765

C =
βω̄2

f̄P

 0 βαω̄ 0
−α 0 αω̄2(β2 −Dα2 − k2β2)
kβ −(Dα2 + k2β2)ω̄ kβω̄2(2Dr22 + 2k2β2)

 . (B.26)766

Again, multiply the second column by 2kβω̄ and add it to the third column767

C =
βω̄2

f̄P

 0 βαω̄ 2kβ2αω̄2

−α 0 αω̄2(β2 −Dα2 − k2β2)
kβ −(Dα2 + k2β2)ω̄ 0

 . (B.27)768

The determinant is then computed as769

det(C) = kβ5α2ω̄9

f̄3P
(Dα2 + β2 + k2β2). (B.28)770

Assume det(C) = 0, by exploiting α2 = 1− β2,771

D + β2(k2 −D + 1) = 0. (B.29)772
773

Substituting the definition of D and k (B.9) back into the above equation yields774

β2 =
Θ2

x −Θ2
y

−2Θ2
y − 2ΘxΘy −K2

. (B.30)775
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If Θ2
x − Θ2

y ≥ 0, clearly, the left hand side of (B.30) cannot be equal to its right hand side. Thus, the776

matrix C has full rank.777

If Θ2
x−Θ2

y < 0, the eigenvalues of AB
S are guaranteed to be stable. To see this, computing the characteristic778

polynomial of the matrix AB
S (eigenvalues of a matrix stay invariant under coordinate transformation) leads779

to780

det(λI −A) = λ3 + 2kβω̄︸ ︷︷ ︸
a1

λ2 + (β2ω̄2 − α2ω̄2D)︸ ︷︷ ︸
a2

λ+ 2kβ3︸ ︷︷ ︸
a3

ω̄3 = 0. (B.31)781

According to the Routh-Hurwitz stability criterion, the poles of (B.31) have strictly negative parts if and782

only if the conditions a1 > 0, a2 > 0, a1a2 > a3 > 0 are fulfilled (Fact 11.17.2 [33]). This is clearly the case783

if Θ2
x −Θ2

y < 0 (i.e. D < 0) and recall that k > 0, β > 0, and ω̄ > 0.784

In conclusion, the system matrix pair (A11, B1) is at least stabilizable for this case.785

Appendix B.2. Controllability analysis for case 2786

In this case (for assumptions see Section 3.2.3), we will show that the system is not stabilizable.787

The Euler equation simplifies to788

ṗB = −J
Φ
pB

∥∥ωB
BE

∥∥ (B.32)789

q̇B = − l

Θ
fP − K

Θ
qB

∥∥ωB
BE

∥∥+
Θ− Φ

Θ
pBrB (B.33)790

ṙB =
κ

Θ
fP − K

Θ
rB

∥∥ωB
BE

∥∥+
Φ−Θ

Θ
pBqB . (B.34)791

792

Setting the left hand side of (B.32) to zero yields p̄B = 0.793

Let the components of RBC be794

RBC =
[
e1 e2 e3

]
=

r1 r2 r3
r4 r5 r6
r7 r8 r9

 , (B.35)795

where ei, i = 1, 2, 3 denote the column vectors of RBC , and ri, i = 1, ...9 denote the entries. Since RBC is a796

coordinate transformation matrix, the column vectors satisfy the following properties:797

e1 × e2 = e3 (B.36)798

e2 × e3 = e1 (B.37)799

e3 × e1 = e2. (B.38)800
801

RBCω̄C
CE = ω̄B

BE can be written as802

p̄B = ω̄r3 = 0, q̄B = ω̄r6, r̄B = ω̄r9, (B.39)803

which also leads to r3 = 0.804

Furthermore, by (14)805

0 = nCP,y =
(
RCBnBP

)
2
= r8, (B.40)806

where
(
RCBnBP

)
2

denotes the second entry of RCBnBP .807

Linearizing (B.32)-(B.34) around (p̄B , q̄B , r̄B) yields808

AB
S =

−jω̄ 0 0
−cr̄B −kω̄ 0
cq̄B 0 −kω̄

− k

ω̄
ω̄B

BE(ω̄
B
BE)

>, BB
S =

[
0 − l

Θ
κ
Θ

]
, (B.41)809
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where j := J
Φ , k := K

Θ and c := Φ−Θ
Θ .810

Substituting (B.39) into AB
S and applying coordinate transformation AC

S = RCBAB
SR

BC and some811

simplifications ((B.36), (B.37), (B.38), and (B.40)), it follows that812

AC
S =

−kω̄ + cr1r2ω̄ + r21(k − j)ω̄ r22cω̄ + r1r2(k − j)ω̄ r2r3cω̄
−r21cω̄ + r1r2(k − j)ω̄ −kω̄ − cr1r2ω̄ + r22(k − j)ω̄ r1r3cω̄

0 0 −2kω̄

 . (B.42)813

Substituting (B.39) into (B.33) and (B.34) and setting their left hand side to zero yields814

− l

Θ
=

1

f̄P
kr6ω̄

2 (B.43)815

κ

Θ
=

1

f̄P
kr9ω̄

2. (B.44)816

817

Substituting (B.43) and (B.44) into BB
S in (B.41) and simplifying RCBBB

S yields818

BC
S =

[
0 0 kω̄2

f̄P

]
. (B.45)819

Substituting the (B.42) and (B.45) into the definition of Ui and computing its determinant leads to820

det(Ui) = 0. (B.46)821

This implies that the modes associated with the eigenvalues ±ω̄i are not controllable, and the system is822

therefore not stabilizable.823

Appendix B.3. Controllability analysis for case 3824

The simplified Euler equation (40) for this case (for assumptions see Section 3.2.3) has the form825

ΘxṗB = (Θy −Θz)qBrB −Kd,xxpB
∥∥ωB

BE

∥∥ (B.47)826

Θy q̇B = (Θz −Θx)pBrB −Kd,yyqB
∥∥ωB

BE

∥∥ (B.48)827

Θz ṙB = (Θx −Θy)pBqB −Kd,zzrB
∥∥ωB

BE

∥∥+ κfP . (B.49)828
829

Linearizing the above three equations around the equilibrium (0, 0,
√

κf̄P
Kd,zz

) yields830

AB
S =

−kxω̄ ar̄B 0
br̄B −kyω̄ 0
0 0 −kzω̄

 , BB
S =

 0
0
κ
Θz

 (B.50)831

where kx := Kd,xx/Θx, ky := Kd,yy/Θy, kz := Kd,zz/Θz, a := (Θy −Θz)/Θx, and b := (Θz −Θx)/(Θy).832

From (B.12) and (B.13) it can be solved that µ = ν = η = 0. Therefore, RBC is a three dimensional833

identity matrix.834

For the eigenvalue ±ω̄i, it is clear that det(Ui) = 0. Thus the system for this case is not stabilizable.835
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