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Abstract— In certain challenging environments, such as inside
buildings on fire, the main sensors (e.g. cameras, LiDARs and
GPS systems) used for multicopter localization can become
unavailable. Direct integration of the inertial navigation sensors
(the accelerometer and rate gyroscope), is however unaffected
by external disturbances, but the rapid error accumulation
quickly makes a naive application of such a strategy feasible
only for very short durations. In this work we propose a motion
strategy for reducing the inertial navigation state estimation
error of multicopters. The proposed strategy breaks a long
duration flight into multiple short duration hops between
which the vehicle remains stationary on the ground. When
the vehicle is stationary, zero-velocity pseudo-measurements
are introduced to an extended Kalman Filter to reduce the
state estimation error. We perform experiments for closed-loop
control of a multicopter for evaluation. The mean absolute
position estimation error was 3.4% over a total flight distance
of 5m in the experiments. The results showed a 80% reduction
compared to the standard inertial navigation method without
using this strategy. In addition, an additional experiment with
total flight distance of 10m is conducted to demonstrate the
ability of this method to navigate a multicopter in real-world
environment. The final trajectory tracking error was 3% of the
total flight distance.

I. INTRODUCTION

Reliable and cost effective state estimation methods are
critical for the operation of unmanned aerial vehicles (UAV).
In laboratories, motion capture systems are often used to
obtain very accurate state estimation of multicopters at high
frequency [1]. While these systems are ideal for indoor
research use, they are usually very expensive, inconvenient
to set up and can only cover a small area in the order
of several square meters [2]. For operations in open areas,
Global Navigation Satellite System (GNSS) is widely used
and can achieve localization accuracy of a few meters. In
places where GNSS signal is weak or unavailable (e.g.
indoor, underground or near tall buildings), radio beacons
can be used to setup a localization networks [3] [4]. Such
radio based localization systems can be created at a relatively
low cost but the reliance on infrastructure makes them less
flexible compared to only relying on on-board sensors.

Another category of UAV state estimation methods only
relies on sensors on the vehicle itself such as cameras,
LiDAR and Inertial Measurement Units (IMUs). One popular
method in this category is simultaneous localization and
mapping (SLAM) where the measurements from on-board
sensors are often fused to build a map of the vehicle’s
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Fig. 1. Video sequences of a quadcopter doing a short hop flight. The
state estimation error of inertial navigation can be reduced significantly by
breaking a long time flight into multiple short time hop flights.

surrounding environment and find the vehicle’s location
in the map [5] [6] [7]. Not dependent on any particular
infrastructure, these methods are easy to deploy. In the recent
past there have been significant progress in this area which
enables them to transit into real-world applications [7]. On
the other hand, these methods often require expensive sensors
such as LiDAR and powerful computers and it is challenging
to make them work robustly in challenging (e.g. featureless
or dusty) environments.

Inertial navigation is a potential solution under these
challenging environments since the only sensor it requires
is the IMU, which is usually unaffected by environments.
Inertial state estimation has many applications in robotics
state estimation. For example, [8] used inertial navigation for
wheeled robots. By utilizing the information that the wheeled
vehicle’s lateral and vertical velocities are roughly zero
in body frame and using a Convolutional Neural Network
(CNN) for the IMU noise estimation, the method was able
to achieve a position estimation error comparable to methods
of using LiDAR or stereo vision. In addition, [9] [10]
used inertial measurements with the aerodynamic modeling
of the vehicle for the velocity and attitude estimation of
multicopters.

A major challenge of inertial navigation is that consumer-
level IMUs have large measurement noise which will result
in fast error accumulation [11]. One technique to reduce
inertial navigation error is detecting when the tracked object
is stationary and add “zero-velocity pseudo measurements”
to the state estimator during the stationary period. For
example, [12] and [13] discussed the use of this technique
to reduce pedestrain tracking error.

In this work, we propose a strategy for multicopter inertial
navigation with only the accelerometer and rate gyroscope
as sensors. In our proposed strategy, the multicopter moves
by taking a series of short duration flights instead of a
single long duration flight. Between the short flights, the
vehicle remains stationary on the ground and we introduce
zero-velocity pseudo measurements to an extended Kalman
Filter (EKF) to reduce the state estimation error. Analytical



analysis of state estimation error of this method is given and
experiments were done to evaluate its effectiveness.

The proposed method is especially helpful in challenging
environments, because 1) it does not require any infras-
tructure and can be easily deployed; 2) rapid technological
advancement of Micro-electromechanical system (MEMS)
based IMUs have made them cheap, small and lightweight
to be widely used on small multicopters; 3) it is unaffected
by GPS-denied, limited visibility (e.g. smoky) or featureless
environments. For example, when a multicopter is used to
help firefighters to get information about a building on fire,
this method can be used to navigate the vehicle to go
through sections with dense smoke when other sensors (e.g.
cameras and LiDARs) used for navigation are temporarily
unavailable.

II. MULTICOPTER MODELLING

In this section we define the reference frames, briefly
introduce the dynamic model of a multicopter, and analyze
the accelerometer and rate gyroscope error characteristics.

A. Multicopter dynamics

As shown in Fig. 2 an inertial frame I attached to the
ground and a body frame B attached to the Center of Mass
(COM) of the multicopter, are defined. The multicopter is
defined as a rigid body with six degrees of freedom: three
degrees of freedom from the linear translation p along the
three axes of the inertial frame and three degrees of freedom
from the three-axis rotation from the body frame to the
inertial frame, described by an orthogonal rotation matrix R.
Denote the thrust produced by each propeller as fi, expressed
in the vehicle’s body frame. With linear velocity v, linear
acceleration a and the gravity acceleration g, all expressed
in the inertial frame, the translational dynamics of the vehicle
is expressed as

d

dt
p = v (1)

d

dt
v = a (2)

ma = mg +R
∑

fi (3)

Denote the angular velocity of the vehicle as ω =
(w1, w2, w3) and torque produced by each propeller as τi,
both expressed in the vehicle’s body frame. The rotational
dynamics of the vehicle is expressed as

d

dt
R =RS(ω) (4)

Jω̇ =− ω × Jω +
∑

τi (5)

where S(ω) is the skew-symmetric matrix form of the vector
cross product such that

S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (6)

A detailed description of multicopter dynamics can be
found in e.g. [14] [15].

Fig. 2. Definition of reference frames. I represents the inertial reference
frame and B represents the vehicle’s body frame.

B. Sensor error characteristics

In this work we focus on MEMS IMUs consisting of a
gyroscopes and an accelerometer, which are widely used on
micro multicopters because of their small size and weight,
low power consumption and low cost. The rate gyroscope
measures angular velocity and the accelerometer measures
proper acceleration (acceleration relative to a free-fall) of
the vehicle, both measurements are expressed in the body
frame B.

Measurement errors of MEMS IMUs usually include the
following types [11]:

1) Bias: the offset of IMU measurements from the true
values, which can be compensated by simply subtracting
out from IMU outputs.

2) Thermo-mechanical white noise
3) Bias instability: the change in IMU bias.
4) Scale factor error and nonlinearity.

Among these four types of error, the thermo-mechanical
white noise and uncorrected bias and scale factor error are
usually the most significant errors [11]. In the proposed
inertial navigation method, the bias and scale error are
corrected by IMU calibration. The sensors are modeled as

α = R−1(a− g) + nα (7)
γ = ω + nγ (8)

where α is the measurement of accelerometer and nα is
accelerometer’s measurement noise. Similarly, γ is the mea-
surement of the rate gyroscope, and nγ is rate gyroscope’s
noise. The variance of the noises are σ2

αI and σ2
γI for the

acceleromenter and rate gyroscope respectively, both noises
are assumed to be isotropic.

III. STATE ESTIMATION

An extended Kalman Filter (EKF) is used for the state
estimation of the vehicle according to the method proposed
in [16]. The estimator’s state vector ξ̂ consists of 9 elements:

ξ̂ =

p̂v̂
δ̂

 (9)

where p̂ is vehicle’s estimated position, v̂ is vehicle’s esti-
mated velocity and δ̂ is estimated three-dimensional attitude



error with respect to the reference orientation R̂ref . The
estimated orientation of the vehicle is represented by

R̂ = R̂ref(t) exp (S
(
δ̂
)

) (10)

where exp(·) is matrix exponential so that exp S
(
δ̂
)

repre-
sents rotation matrix.

A. Prediction

During the prediction step, the estimator does not use
dynamics equations of the vehicle, but uses measurements
from the accelerometer and rate gyroscope instead. Thus, it
does not require knowing any dynamics parameters of the
vehicle. The prediction step follows the following difference
equations

ξ̂p(t+ ∆t) = ξ̂(t) +

 d
dt p̂(t)
d
dt v̂(t)
d
dt δ̂(t)

∆t

=


p̂(t) + v̂(t)∆t

v̂ +

((
R̂ref(t) exp

(
S
(
δ̂(t)

)))−1
α(t) + g

)
∆t

δ(t) +
(
γ(t)− 1

2 S(γ(t)) δ(t)
)

∆t


(11)

The estimated variance is given by

Pξξ,p(t+ ∆t) = A(t)Pξξ(t)A(t)T +Q (12)

where

A(t) =

I I∆t 0

0 I S
(
R̂ref(t)

−1α(t)
)

∆t

0 0 I − 1
2 S(γ(t)) ∆t


Q = diag

[
0, σ2

αI, σ
2
γI
]

The attitude error δ is then set to zero after each prediction,
by updating the reference attitude Rref and covariance
matrix. The details of this update can be found in [17].

B. Zero-velocity update

When the vehicle stays still on the ground, the knowledge
that the vehicle is not moving can be utilized to improve
state estimation performance. The proposed zero-velocity
detector is based on rate gyroscope only for computational
simplicity, since [18] has shown that using both measure-
ments from the accelerometer and rate gyroscope only gives
marginal performance improvement compared to using rate
gyroscope’s measurements only. The zero velocity detector
has two tuning parameters, Nthreshold and γthreshold. If the
magnitude of the rate gyroscope’s measurement is below
γthreshold for more than Nthreshold continuous time steps,
the vehicle is considered stationary and it is considered to
be moving otherwise. For the hardware we use, Nthreshold

was tuned to be 20 and γthreshold was tuned to be 0.2 rad/s.
A demonstration of the zero velocity detector is shown in
Fig. 3.

Fig. 3. A demonstration of the implemented zero velocity detector based
on the magnitude of rate gyroscope measurements. The value of zero
velocity detection state is either 1 (stationary) or 0 (moving). The vehicle is
“hopping” from 1.55s to 2.75s and from 4.7s to 6.0s. It remains stationary
on the ground for the rest of the time.

When the vehicle is detected to be stationary, zero-velocity
updates as pseudo measurements are introduced to the state
estimator. The observation matrix H is

H =
[
0, I3×3, 0

]
For notational convenience, we set t ← t + ∆t. Follow the
standard EKF formalism and we can get

K(t) = Pξξ,p+(t)HT
(
HPξξ,p+(t)HT

)−1
(13)

ξ̂m(t) = ξ̂p+(t) +K(t)
(
−v̂p+(t)

)
(14)

Pξξ,m(t) = (I −K(t)H)Pξξ,p+ (15)

R̂refm(t) = R̂refp+(t) (16)

Note that the zero-velocity pseudo measurements has zero
variance. The δ̂m(t) is then reset to zero by updating the
reference attitude Rref and covariance matrix. The details of
this update can be found in [17].

IV. MULTICOPTER INERTIAL NAVIGATION

In this section, we provide a simplified analysis of the
state estimation error of inertial navigation and based on
the analysis propose a special flight motion to the state
estimation error.

A. Error analysis

State estimation by directly integrating the measurements
from IMU would cause the estimation error to grow rapidly.
To illustrate rapid growth of error, a simplified analysis
of the position estimation error on one direction is given
below. Linearize the attitude at hovering, where the proper
acceleration is equal to −g. We define ξ̂ =

[
p, v, θ

]>
,

where p, v and θ represent position, velocity and attitude
respectively, from (1), (2), (7) and (8), we can get

d

dt
ξ̂(t) = Aξ̂(t) +

 0
σα
σγ

 (17)

d

dt
P (t) = AP (t) + P (t)A> +Q (18)



where

A =

0 1 0
0 0 g
0 0 0

Q = diag
[
0, σ2

α, σ
2
γ

]
We define the initial variance of the states to be P (0) =
diag[Ppp(0), Pvv(0), Pθθ(0)]. The variance of the states at
time t are given by

Pθθ(t) =σ2
γt+ Pθθ(0) (19)

Pvv(t) =
σ2
γg

2

3
t3 + g2Pθθ(0)t2 + σ2

αt+ Pvv(0) (20)

Ppp(t) =
σ2
γg

2

20
t5 +

g2Pθθ(0)

4
t4 +

σ2
α

3
t3

+ Pvv(0)t2 + Ppp(0) (21)

which shows that after time t the additive noise from the
IMU causes the variance of position grow on the order of
t5.

B. Motion planning

The simplified error analysis in section IV-A points to-
wards a motion planning strategy to reduce state estimation
variance: planning a path with many short duration “hops”.
Between the hops the vehicle remains stationary on the
ground and we can partially reset the state uncertainty. A
single flight of duration t is broken into N hops of time
t/N . After each hop the vehicle stays stationary and the
estimation variance of velocity estimation is set to zero. So
the velocity estimation variance at the beginning of each hop
flight is zero. From (19) - (21), the estimation variance of θ
at the end of short flight i (i ∈ {1, 2, ..., N}) is given by

Pθθ

(
i

N
t

)
= Pθθ(0) + σ2

γ

i

N
t (22)

and estimation variance of position has the following rela-
tionship

Ppp

(
i+ 1

N
t

)
=
σ2
γg

2t5

20N5
+
g2Pθθ(

i
N t)t

4

4N4

+
σ2
αt

3

3N3
+ Ppp(

i

N
t) (i≥1) (23)

Ppp

(
t

N

)
=
σ2
γg

2t5

20N5
+
g2Pθθ(0)t4

4N4
+
σ2
αt

3

3N3

+
Pvv(0)t2

N2
+ Ppp(0) (i = 0) (24)

From (22) - (24) the position estimation variance after N
short motions is

Ppp(t) =
(5N − 3)σ2

γg
2t5

40N4
+
g2Pθθ(0)t4

4N3
+
σ2
αt

3

3N2

+
Pvv(0)t2

N2
+ Ppp(0) (25)

The effect of this motion planning strategy can be seen
by comparing (25) to (21). Assume, for example, the initial
condition of the system is perfectly known, and the system
has a perfect rate gyroscope, such that the state estimation
uncertainty only comes from the the accelerometer, the final

position estimation variance is reduced by a factor of N−2

when t is large.

In Section III, we use an extended Kalman Filter for state
estimation. The zero-velocity pseudo measurement would
provide a even greater reduction in position estimation vari-
ance compared to the error analysis in this section because
of the correlation between velocity and position as well as
the correlation between velocity and attitude.

For trajectory planning of each hop, we use the method
proposed in [19], a trajectory generation method which mini-
mizes the jerk (third derivative of position) of the multicopter
given the initial and desired final states. The solution of
minimum-jerk trajectory is provided in closed form and is
computationally inexpensive, which makes it suitable to be
implemented on embedded flight controllers. In addition, the
method verifies if the planned trajectory satisfies the vehicle’s
actuation constraints (e.g. maximum thrust of the motor)
and does not collide with known planar obstacles (e.g. the
ground).

The vehicle’s initial velocity and acceleration are zero
because of the stationary state between the hops. The final
velocity of the hop trajectory is zero such that the vehicle
stops moving after each hop. Between each hop, the vehicle
remains stationary on the ground, and the zero-velocity
pseudo measurements are introduced to reduce the estimation
variance of the state estimator. Although a shorter hop dura-
tion is helpful to reduce state estimation error, too aggressive
trajectories will make the trajectory tracking difficult. As a
result, the trade-off between the aggressiveness of the hop
trajectory and trajectory tracking should be considered when
choosing the hop time. The height of the hop trajectory can
be adjusted by changing the final acceleration on the vertical
direction.

V. EXPERIMENTAL EVALUATION

A. Experimental setup

Experiments were conducted to evaluate the performance
of the proposed inertial navigation method, and can be
seen in the video attachment of this paper. A custom-built
quadcopter, as shown in Fig. 4 was used in the experiments.
The quadcopter weighs 165g including the battery. The
distance between the hubs of two diagnal motors is 117.6mm
and the propeller is 76.2mm in diameter. A small analog
camera is installed on the vehicle for video streaming.

A Crazyflie 2.0 [20] running a modified version of PX4
firmware was used as a low-level flight controller for the
quadcopter. It is equipped with a consumer-level MEMS
IMU (InvenSense MPU-9250) with a measurement fre-
quency of 500Hz. The trajectory tracking flight controller
and the proposed inertial state estimator ran on this micro-
controller at 500Hz.



Fig. 4. The quadcopter used in the experiments.

The experiments were done in an indoor flight space of
size 7 × 6 × 5m. A commercial motion capture system,
which provides high-accuracy, high-rate state information,
was used during the experiments to provide ground truth of
the vehicle’s states.

B. Performance evaluation

1) The proposed strategy: The proposed inertial state
estimator’s performance was quantified by comparing with
state estimation from the motion capture system. Note that
during the experiments, the motion capture system is only
used for ground truth, not for control of the vehicle. In the
experiments, the vehicle was commanded to fly in a constant
direction for 5 meters in 5 hops, each hop had length of 1m
and took 1 second. There was a two-second interval between
two hops, when the vehicle is stationary on the ground. The
state estimator introduced in Section III was used to estimate
the state of the vehicle and a cascaded PD controller was
used for trajectory tracking.

The experiment was repeated eight times. The state esti-
mation error of the proposed inertial state estimator is shown
in Fig. 5. At the end of the flight, the root mean square
error (RMSE) for position estimation was 0.13m, 0.12m
and 0.03m for the downrange direction (flight direction),
crossrange direction (perpendicular to the flight direction and
in the horizontal plane) and vertical direction, respectively.
The mean absolute position estimation error was 0.17m,
which was 3.4% of the total flight distance. The trajectory
of the vehicle (measured by the motion capture system),
is compared with the reference trajectory in Fig. 6. At the
end of the flight, the RMSE of position tracking was 0.19m
and 0.06m for the crossrange and downrange direction. The
position tracking error was zero for the vertical direction
because the floor in the flight space is horizontal and flat.
The mean absolute tracking error was 0.16m, which was
3.2% of the total flight distance.

2) Long duration flights as comparison: Experiments
with a long duration flight instead of multiple short-duration
hops are conducted to compare with the proposed strategy.
In the experiments, the vehicle was commanded to fly in
a constant direction for 5 meters in 5 seconds. The motion
capture system was used during the flight for state estimation
for control because inertial navigation for 5 seconds would

Fig. 5. Position estimation of the vehicle, using only the rate gyroscope
and accelerometer. No knowledge of the environment, except that the floor
is not moving, is assumed. The effect of zero velocity measurement update
could be seen at around 1.5s, 4.5s, 7.5s, 10.5s and 13.5s for reducing the
estimation error.

Fig. 6. Closed-loop control of the vehicle using the proposed inertial
navigation estimator. Trajectories of 8 separate flights are shown in solid
lines with different color and the final position of each flight is marked by
a solid circle. The reference trajectory is shown as a black dashed line.



Fig. 7. Position estimation error of the vehicle for a single long duration
flight without using the proposed strategy.

give a large state estimation error and can crash the vehicle.
After the experiments, we run the inertial navigation off-
board using the collected IMU data. We then compare the
position estimation from inertial navigation with position
estimation from the motion capture system, which is used
as ground truth. The experiment was repeated eight times
and the state estimation error is shown in Fig. 7. At the
end of the flight, the root mean square error (RMSE) for
position estimation was 0.85m, 0.56m and 0.25m for the
downrange, crossrange and vertical direction, respectively.
The mean absolute position estimation error was 0.88m,
which is 17.6% of the total flight distance, and is 4.2 times
larger than the proposed strategy. The position estimation
error of these two methods are compared in table I.

TABLE I
POSITION ESTIMATION ERROR COMPARISON

position estimation error proposed strategy long-distance flight

downrange RMSE 0.13m 0.85m

crossrange RMSE 0.12m 0.56m

vertical RMSE 0.03m 0.25m

mean absolute error 0.17m 0.88m

C. Motivating example

In addition to the experiments in the flight space, an ad-
ditional experiment was conducted where the vehicle flew a
longer distance around a corner. The experiment environment
is shown in Fig. 8. This experiment demonstrates the ability
of the proposed inertial navigation strategy to navigate a
multicopter in real-world environment. The vehicle first flew
forward for 6m in 6 hops and then made a left turn and flew
4m in 4 hops. Each hop was 1 second. The proposed strategy
successfully navigates the vehicle and final position tracking
error was about 0.3m, which is about 3% of the total flight
distance, a similar result as before.

Fig. 8. The vehicle flew 10m in 10 hops around a corner. The green
dots mark the target positions, the blue dots mark the actual position of the
vehicle after each hop, and the red dots mark the estimated positions. The
white curves represents the actual flight path.

VI. CONCLUSION AND FUTURE WORK

In this work, an inertial navigation strategy for multi-
copters was proposed. The proposed method is based only
on measurements from the on-board accelerometer and rate
gyroscope and is especially suitable for challenging en-
vironments where other sensors are unavailable. An error
analysis of the state estimation error of inertial navigation
was introduced and based on this analysis a motion planning
method of breaking a long time flight into multiple short time
flight steps was proposed to reduce the estimation error.

Indoor experiments were repeated multiple times to eval-
uate the performance of this state estimation method, using
a standard quadcopter equipped with a consumer-level IMU.
The state estimator was used for closed-loop control of the
multicopter. The experiments showed that the mean absolute
position estimation error of the proposed state estimator at
the end of the flight was 0.17m for translation of 5m, which
was 3.4% of the total distance, and the final mean absolute
trajectory tracking error was 0.16m, which was 3.2% of the
total distance.

For future work, we would like to investigate the optimal
trajectory for each flight step. Intuitively, a trajectory with
large acceleration initially (when uncertainty in orientation
estimation is low) and with decreasing acceleration as time
increases (due to increasing uncertainty in the vehicle’s
orientation), could possibly achieve the minimum inertial
navigation error. We also plan to design a multicopter with
robust mechanical structure to implement the proposed in-
ertial navigation method, and evaluate the method’s perfor-
mance in complex, challenging environments.
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