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Abstract— Aerial vehicles with collision resilience can operate
with more confidence in environments with obstacles that are
hard to detect and avoid. This paper presents the methodology
used to design a collision resilient aerial vehicle with icosahe-
dron tensegrity structure. A simplified stress analysis of the
tensegrity frame under impact forces is performed to guide
the selection of its components. In addition, an autonomous
controller is presented to reorient the vehicle from an arbitrary
orientation on the ground to help it take off. Experiments show
that the vehicle can successfully reorient itself after landing
upside-down and can survive collisions with speed up to 6.5m/s.

I. INTRODUCTION

It is challenging for Unmanned Aerial Vehicles (UAVs)
to operate in environments with complex obstacles that are
hard to detect and difficult to avoid. Collisions with these
obstacles can disrupt missions and damage vehicles. To
address this problem, many collision resilient designs are
proposed to help aerial vehicles operate safely in a wide
range of environments. Most of these designs fall into one
of three major categories:

1) Adding additional propeller guards [1], [2].
2) Covering the whole vehicle with an external impact

resilient shell [3], [4], [5].
3) Using novel materials that decrease the stiffness of the

vehicle during collisions [6], [7].
Resilient designs of the first category protect propellers, a

key yet vulnerable part of aerial vehicles, from damage in
collisions. For example, spherical guards that can passively
rotate about vehicle propellers are proposed in [1]. The
design prevents the vehicle from bending moment during
collisions and thus increases its surviving rate.

Meanwhile, designs with external shells provide an all-
around protection. For instance, a collision resilient flying
robot protected by a spherical shell with an inner gimbal
system is proposed in [3]. The design decouples its outer
protective shell from its inner propulsion system. As a result,
the inner frame can remain stable during collisions. On the
other hand, a cargo drone with an origami-inspired external
protective shell is demonstrated in [4]. The vehicle can be
folded to reduce its storage volume.

Collision resilient designs of the last category utilize
novel materials. A quadcopter frame made of dual stiffness
materials is proposed in [6]. The frame stays rigid during
normal flights, and becomes soft to absorb energy once it
collides. Similarly, a flexible propeller blade that bends when
colliding with obstacles is presented in [7].
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In this work, we design a vehicle with resilience to colli-
sions at high speed, which can be essential for time-critical
operations such as search and rescue missions. To achieve
high collision resilience, we protect the vehicle with an icosa-
hedron tensegrity (tensile-integrity) structure. A tensegrity
structure is constructed with rigid bodies suspended in a
tension network. The unique static and dynamic features
of tensegrity structures have been studied by many (e.g.
[8], [9]). Due to these features, an icosahedron tensegrity
structure can distribute load among its members and does
not experience bending moment in collisions. As a result,
the structure can provide high impact resilience with a light
weight, and it has consequently been proposed as a potential
candidate for planetary landers [10] and exploratory rovers
[11], [12]. Moreover, an investigation on various tensegrity
designs for aerial vehicle protection has been made in [13].

The contribution of this work is as follows. We present the
methodology used to design a collision resilient aerial vehicle
that takes advantage of the high impact-tolerance of tenseg-
rity structures. We introduce an analysis tool that approxi-
mates the stress in the tensegrity frame during collisions and
use the tool to guide the selection of tensegrity components.
In addition, we propose a controller that can reorient the
vehicle from an arbitrary orientation on the ground to help
it take off again if crash happens. The proposed controller
exploits the 20-faced geometry of the icosahedron tensegrity
and divides the task into simple rotations that are easy to
analyze and implement.

With the proposed methodology, we achieve a new colli-
sion resilient vehicle that can safely operate at high speed
despite the presence of obstacles and can resume its operation

Fig. 1: The icosahedron structured aerial vehicle. The length of each rod in
the icosahedron tensegrity shell is 20cm.



after collisions. The vehicle, shown in Fig. 1, is protected
by an orthogonal icosahedron [14] tensegrity shell made
with carbon fiber rods and high tensile braided fishing lines,
which provide collision resilience with a light weight. The
vehicle weighs 252g and it has repeatedly survived the test
of colliding with a concrete wall at 6.5m/s.

II. DESIGN OF THE TENSEGRITY STRUCTURE

In this section, we introduce the design objectives of the
tensegrity structure, the stress analysis used to guide the
design and the criteria for selecting tensegrity components.

A. Design objectives

The goal of the tensegrity structure is to protect the quad-
copter inside, which has to survive collisions and continue
its operation. As a result, the deformation of the tensegrity
structure should be small during the collision so that vul-
nerable parts like sensors and propellers are not exposed
to obstacles. Moreover, the tensegrity structure should also
be lightweight, so that the additional mass of the structure
has limited influence on the vehicle’s flight performance and
payload capacity.

B. Simplified stress analysis of icosahedron tensegrity

The design of the icosahedron tensegrity structure is
guided by the stress its components experience during the
collisions. To simplify the analysis, we consider only the
moment when the vehicle is experiencing the largest impact
force from the obstacle. To further simplify the problem, we
additionally assume that: 1) the vehicle’s weight is small
compared to the impact force and can be neglected; 2) the
deformation of the tensegrity structure is small so that the
geometry of the tensegrity structure remains unchanged. The
second assumption is a close approximation, because stiff
strings are used in the design to prevent large deformations
that may expose vulnerable parts like propellers to collisions.

Forces in the tensegrity structure can thus be approxi-
mately solved from the following problem. Shown in Fig.
2, an icosahedron tensegrity is fixed on the ground with
three connections. Vertical forces with a sum of Fmax, the
maximum impact force in a collision, is applied to the top
nodes of the vehicle. Due to symmetry, we only need to
consider two configurations: forces act on a face with three
string-pieces or on a face with two string-pieces. Moreover,
for each configuration, we consider following scenarios: the
total impact force is evenly distributed among 1, 2 or 3 nodes.

The equilibrium equations of the system can then be
formulated. The icosahedron tensegrity has 12 nodes. Denote
the nodes as ni, where i = 1, ..., 12. These nodes are
connected by 6 rods and 20 string-pieces. We denote the
connectivity of the nodes with functions Nr and Ns:

Nr(i, j) =

{
k, if rod k connects ni and nj

0, otherwise
(1)

Ns(i, j) =

{
l, if string-piece l connects ni and nj

0, otherwise
(2)

(a) (b)

Fig. 2: Setup of the simplified stress analysis problem: the bottom of the
tensegrity is connected to the ground, and forces are exerted to tensegrity’s
top nodes. Two configurations are considered: (a) Forces act on a face with
three string-pieces. (b) Forces act on a face with two string-pieces.

Denote Tl as the magnitude of the tensile force in string-
piece l, and Ck as the magnitude of the compression force
in rod k. Use UB

i ∈ R3 to represent the external force on
ni in the vehicle body frame. Define sBi,j as the unit vector
along the string-piece from ni to nj , whereas rBi,j as the
unit vector along the rod from ni to nj . Both vectors are in
the vehicle body frame.

At equilibrium, the sum of forces acting on each node is
zero: ∑

Fi = 0 (3)

This equation comes from Newton’s law with the assumption
that each node has zero acceleration. A more rigorous
derivation of tensegrity equilibrium can be found in [15].
Expand the equation, we have for each node i:∑
{j|Nr(i,j) 6=0}

−Ckr
B
i,j +

∑
{j|Ns(i,j)6=0}

Tls
B
i,j +UB

i = 0 (4)

where the indices of string-pieces, l and the indices of rods,
k, come from connectivity functions: l = Ns(i, j) and k =
Nr(i, j).

Due to the existence of self-stress in the icosahedron
tensegrity, the structure is statically indeterminate [16]. With
the assumption that the members of the tensegrity structure
follow Hooke’s law when the deformation is small, we apply
the principle of minimum energy and solve for a minimum
energy configuration solution under equilibrium constraints,
with a method similar to the one presented in [17]:

min
T,C,UB

∑
k

1

2
Kr(εkLr)2 +

∑
l

1

2
Ks(εlLs)

2

s.t. Equilibrium condition: Eq. (4)

εk =
Ck

EsAs

εl =
Tl

ErAr
≥ 0

(5)

Constants K, E, A, L denote Hooke’s constant, Young’s
modulus, cross sectional area and length respectively. Sub-
scripts s and r represents string-pieces and rods. εk and εl
are the strain of rod k and string-piece l. Notice that the



strain of the string-pieces is constrained to be positive as the
string-pieces cannot be compressed.

Finally, compare the results of all possible configurations
and external force scenarios. Define the maximum compres-
sion force in rods as Cmax and maximum tensile force in
string-pieces as Tmax.

C. Selection of tensegrity components

Tensegrity components (rods and strings) in the structure
should survive the maximum tensile and compression force
found in the previous subsection. In other words, the stress
in the string should be smaller than its yielding strength σys
with a factor of safety ηs:

ηs
Tmax

As
< σys (6)

Meanwhile, the maximum stress in the rod should be smaller
than both its yielding strength σyr and its critical buckling
strength σbr with factors of safety ηr1 and ηr2.

ηr1
Cmax

Ar
< σyr, ηr2

Cmax

Ar
< σbr (7)

The critical buckling strength of the rod can be approximated
with Euler’s buckling theory:

σbr =
π2ErIr
Ar(Lr)2

(8)

Here Ir is the second moment of area of the rod.

III. VEHICLE CONTROLLERS AND STATE ESTIMATORS

A. Sensing and state estimation

The vehicle’s onboard sensing system is based on an
Inertial Measurement Unit (IMU) that provides information
about the vehicle’s acceleration and angular velocities. A
motion capture system is used to provide off-board estima-
tion of the vehicle’s full 6 degrees of freedom position and
orientation states. The onboard rate gyroscope is also used in
flight for attitude estimation and angular velocity feedback.

During the reorientation process, however, the vehicle is
assumed to lose access to the motion capture system due to
occlusion of motion capture markers and thus solely relies
on its IMU for state estimation. It estimates its attitude
from accelerometer and rate gyroscope measurements with
a complementary filter.

B. Flight controller

The overall control strategy of the vehicle is presented in
Fig. 3. It features a cascaded control structure: a position
controller outputs desired total thrust and thrust direction,
whereas an attitude controller computes desired torques.
Finally, a thrust converter maps the total thrust and body
torque commands to per-propeller thrust commands. This
cascaded structure can be decoupled into two separate parts:
an offboard controller for position and attitude control, and
an onboard part implementing thrust conversion.

Fig. 3: Control architecture of the vehicle.

The position controller makes position error act as a
second order system with damping ratio ζp and natural
frequency ωp:

d̈Ed = 2ζpωp(ḋEd − ḋE) + ω2
p(dEd − dE) (9)

where dE is the position of the vehicle, d̈Ed is desired accel-
eration, ḋEd is desired velocity and dEd is desired position.
All vectors are in the Earth frame. Thus, we can find desired
total thrust and its direction as:

fd = m||d̈Ed ||2, zB,d =
d̈Ed
||d̈Ed ||2

(10)

A desired angular velocity ωB
d is computed as propor-

tional to the orientation error and then an desired angular
acceleration is computed as follows:

ω̇B
d =

1

τ
(ωB

d − ωB) (11)

where ωB is the angular velocity measured by rate gyroscope
and τ is the desired time constant. All vectors are in vehicle’s
body frame. Thus, the desired torque follows as:

τB
d = Jω̇B

d (12)

Where J is the moment of inertia of the vehicle.
Finally, the thrust converter computes the desired thrust

force for each propeller as follows:

fPi
=

1

4

([
r−1
i,y −r−1

i,x κ−1
]
τB
d + fd

)
(13)

where ri is a vector pointing from center of mass to propeller
i and ri,x and ri,y are the components of ri along the x-
axis and y-axis of the body frame. κ is the propeller torque
constant.

IV. AUTONOMOUS REORIENTATION

In this section, we introduce the controller used to au-
tonomously reorient the vehicle from an arbitrary orientation
on the ground to help it take off.

A. Problem setup
The icosahedron tensegrity has twenty faces, numbered

from 1 to 20, as shown in Fig. 4. After collisions, the
tensegrity will land with one of its faces on the ground.
We denote the contact face as Fi if the ith face of the
tensegrity is touching the ground. In most of the attitudes, the
propellers are not pointing upwards, and it is very difficult for
the tensegrity vehicle to take off. The goal of autonomous
reorientation is to find a series of control inputs that can
rotate the vehicle back to an attitude from which it can easily
take off.
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Fig. 4: The icosahedron tensegrity structure has 20 faces, numbered from
1 to 20. (a): Isosymmetric view of icosahedron tensegrity. (b): Faces of an
unfolded icosahedron tensegrity.

B. Contact face identification

To successfully rotate to a desired attitude, the vehicle
needs to first identify which face of the tensegrity is in
contact with the ground.

The rods of the icosahedron tensegrity structure are paral-
lel with the axes of the body frame. As a result, each contact
face of the vehicle corresponds to a specific roll-pitch angle
pair that can be found as follows:

Assume the contact face of the tensegrity is Fi and node
j, node k and node l are the three nodes on the face. Let
nB

j , nB
k , nB

l be the positions of these nodes in the vehicle
body frame. Thus, wB

i , a vector normal to the contact face
in the vehicle body frame can be found as:

wB
i = (nB

j − nB
k )× (nB

j − nB
l ) (14)

Furthermore, a unit vector normal to the contact face and
pointing into the icosahedron tensegrity can be computed as:

vBi = sgn(−nB
j ·wB

i )
wB

i

||wB
i ||

(15)

where sgn is the sign function.
Let zB be the unit vector pointing along the positive z-

axis of the vehicle body frame. The rotational matrix that
rotates zB to vBi can be found as follows:

Ri = I + S(zB × vBi ) +
(
S(zB × vBi )

)2 1

1 + zB · vBi
(16)

Where S(.) is the skew-symmetric cross product matrix, so
that S(a)b = a× b.

As the attitude of the vehicle is defined as a rotation from
the vehicle body frame to the Earth frame, Ri also represents
the attitude of a vehicle with contact face Fi and zero yaw
angle:

(0, θi, φi) = fRr(Ri) (17)

where fRr(.) is the conversion from rotation matrix to yaw-
pitch-roll Euler-angle set.

Hence, the difference between the estimated attitude and
the attitude of a vehicle with contact face Fi and zero yaw
angle is:

∆Ri = (frR(0, θi, φi))
T frR(0, θ̂, φ̂) (18)

where frR(.) converts a yaw-pitch-roll Euler-angle set to a
rotation matrix, whereas θ̂ and φ̂ are estimated pitch and roll
angles of the vehicle from the attitude estimator introduced
in Section III. Finally, the contact face is identified:

i = argmin(fRΘ(∆Ri)) (19)

where fRΘ(.) evaluates the angle of rotation matrix in the
sense of the axis-angle representation.

C. Target attitude

To implement a rotation that switches contact face from
Fi to Fi+1, the vehicle first has to find its target attitude after
the rotation.

Consider the following scenario: the tensegrity sits on the
ground with contact face Fi and the current attitude of the
vehicle is estimated to be R̂. The desired new contact face is
Fi+1. Notice that face i and face i+ 1 are adjacent. Denote
the nodes shared by the two faces as node j and node k.
Thus, the desired rotation can be represented with an axis-
angle pair. The axis, in the Earth frame, can be found as:

eEi,i+1 =
R̂(nB

j − nB
k )

||nB
j − nB

k ||
(20)

where nB
j amd nB

k are positions of node j and node k in
the vehicle body frame. Meanwhile, let hi be a unit vector
on face i that is orthogonal to nB

j −nB
k . Similarly, let hi+1

be a unit vector on face i+1 that is orthogonal to nB
j −nB

k .
Thus Θ, the angle of rotation between the two adjacent faces
can be found as:

Θ = cos−1(hi · hi+1) (21)

Hence, the desired target attitude follows:

Rd = fAR

(
(eEi,i+1,Θ)

)
R̂ (22)

where fAR(.) converts an axis-angle pair to a rotation matrix.

D. Reorientation path

We introduce here a method to find the next contact face
during the process of autonomous reorientation.

Possible transitions between contact faces are shown in
Fig. 5.(a). Each node in the graph represents a contact face
and two points are connected if the vehicle can transition
between two faces via rotating about a tensegrity edge. The
weights of the edges in the graph are the angles between
two adjacent faces. We define the contact face F1 as the goal
where the vehicle can directly take off. Thus, the objective
is to find shortest paths starting from an arbitrary point on
the graph to the goal.

It is worth noting that during the experiment, some paths
in the graph are found to be physically infeasible, as they
require the vehicle to generate a large yaw torque that
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Fig. 5: Connectivity plot of the tensegrity vehicle. Circled numbers indicate
indices of contact faces. Weights of the edges are angles of the corre-
sponding rotations in degrees. (a): Connectivity plot based on icosahedron
geometry. (b): Connectivity plot after deleting infeasible transitions and
adding two new rotations about tensegrity nodes (shown as red curves).
(c): Final reorientation path.

exceeds the capability of the vehicle. These connections
are deleted from the graph and the operation makes the
graph disconnected. To fix the problem, we add two special
movements in which the vehicle rotates about a node, instead
of an edge, as is represented by the red curve in Fig. 5.(b).

With the new graph generated, A* search is used to find
shortest paths from all possible starting points to the goal.
The final reorientation path is illustrated in Fig. 5.(c).

E. Implementation of rotations

Large torques are required to rotate the vehicle on the
ground. As a result, the vehicle is modified so that the
propellers can be controlled to rotate in both clockwise and
counterclockwise directions. Consequently, the propellers
can generate both positive and negative thrusts. Thus, the
envelop of the feasible body torque generated is broadened.

During the process of autonomous reorientation, the same
attitude controller and thrust converter introduced in Section
III is applied. The desired attitude is computed with the
method in Section IV.C. Meanwhile, the desired total thrust
is set to zero. It is noteworthy that thrust commands are
stopped once the vehicle determines its contact face switches
from Fi to Fi+1. At this time, the moment arm of the
gravity is expected to be zero-length and the gravity will
no longer generate a torque against the rotation. Once the
vehicle successfully reaches the desired attitude, it will find
its next target with the method discussed in Section IV.C
and IV.D. Notice that the controller plans at each step, so it
can easily adjust the next target if the vehicle rotates to an
unexpected attitude due to disturbance. After finding the next
target attitude, the vehicle will perform the planned rotation,
and repeat the process until it reaches its goal.

V. EXPERIMENTAL RESULTS

This section presents the result of the tensegrity design
and the experiments demonstrating the vehicle’s collision
resilience and its ability to autonomously reorient itself. All
experiments can be viewed in the attached video.

A. Result of tensegrity design

The tensegrity structure is designed based on the analysis
in Section II. Among all possible candidates satisfying the
design requirements, carbon fiber rods with 6mm outer
diameter and braided fishing lines are selected based on
weight, price and availability. The final tensegrity structure
weighs 50g and is about one-fifth of the total 252g vehicle
mass. The maximum total thrust of the vehicle is 8.5N, which
leads to a 3.4:1 thrust-to-weight ratio.

B. Collision resilience

We command the vehicle to accelerate towards a concrete
wall and collide with it to validate the collision resilience
of the vehicle. Video sequences of the collision process is
shown in Fig. 6. The vehicle collides with the wall at 6.5m/s.
All parts within the tensegirty frame remain intact throughout
the process and the vehicle maintains its ability to fly after
the collision.

C. Autonomous Reorientation

We roll the vehicle like a dice so it starts at a random
attitude on the ground. Afterwards, the autonomous reorien-
tation controller is implemented. The vehicle rotates itself to
a desired attitude from which it can easily take off.

Fig. 7 illustrates the details of the autonomous reorien-
tation process. The first subplot shows the yaw-pitch-roll
angular velocity measured by the vehicle’s onboard rate
gyroscope, and the second subplot captures the motor thrust
commands of the vehicle. Red vertical dashed lines indicate
the change of the faces identified as the closest to the ground,
as described in Section IV.B. The circled numbers are the
indices of the identified contact faces. Note that propeller

43

21

Fig. 6: Video sequences of the collision process: 1) Vehicle accelerates
towards the wall. 2) Collision starts. 3) Vehicle comes to a full stop. 4)
Vehicle bounces back from the wall. The speed of the vehicle right before
the collision is 6.5m/s.
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Fig. 7: Autonomous reorientation process of the vehicle. The circled
numbers are the indices of the identified contact faces whereas red vertical
dashed lines indicate the change of contact faces.

thrust commands become zero once the vehicle determines
its contact face has switched. The graph shows that the
vehicle is able to recognize its face on the ground and
autonomously rotate itself to the goal attitude.

VI. CONCLUSION

In this paper we present the methodology used to design
a collision resilient vehicle that adopts the advantage of
icosahedron tensegrity structures. We guide the design of the
tensegrity with stress analysis of the structure under impact
forces during collisions. A cascaded flight controller with a
state estimator based on an IMU and a motion capture system
is proposed to control the vehicle in flight. We also exploit
the 20-faced geometry of the icosahedron tensegrity and de-
velop an autonomous controller that divides the reorientation
process into a series of rotations switching the tensegrity’s
face contacting the ground. Thus, the autonomous controller
turns a complicated rotation task into a finite state machine
that is easy to analyze and implement.

The tensegrity structure resulting from our design method-
ology weighs about one-fifth of the vehicle’s total mass.
Due to its light weight, the tensegrity frame causes limited
influence on the vehicle’s flight performance. The vehicle
can still achieve a 3.4:1 thrust-to-weight ratio, which grants
decent flight agility. Finally, we validate the capability of
the vehicle with experiments and show that the vehicle can
successfully reorient autonomously and survive collisions
with a concrete wall at 6.5m/s.
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