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Abstract— Small unmanned aerial systems (sUAS) are be-
coming more prevalent, driven by consumer interest and their
potential for revolutionizing aspects of commercial applications,
such as delivery of urgent goods. The expected ubiquity of such
systems raises concerns about their safety, and the ability of
such autonomous systems to operate safely in densely populated
areas (where their value will be greatest). In this paper, we
outline a new framework aiming to add an additional layer
of safety to aerial systems operated by a human pilot or
autopilot by monitoring the UAVs environment for visual cues,
and monitoring the human pilot for signs of distraction. The
system will endow a UAS with the ability to reason about
its safety, and the consequences of safety failures during its
operation. The UAS will furthermore continuously reason about
possible safety maneuvers in response to likely failures — in the
event of an emergency, the vehicle can then execute its last
safe maneuver, thus reducing the systems impending danger.
Embedding consequence awareness in sUAS is an obvious
appeal to safer and more insurable missions. For pilot skill level
awareness, a method utilizing generative adversarial networks,
which improves pilot skill level classification accuracy in our
experiments, is proposed to compensate limited training data
availability.

I. INTRODUCTION

As the Federal Aviation Administration (FAA, responsible
for safety in the US airspace) keeps relaxing the sUAS
(small-Unmanned Aerial Systems) flying restrictions, there is
an increasing concern and need for a safer drone flight frame-
work that can harness the human pilot experience, a drones
own cognition of safe environment and safe operation, as
well as robust flight control strategies that are consequences-
aware.

Autonomous systems are typically engineered to minimize
the likelihood of a fault occurring that would lead to the
failure of the system. For aerial systems, such as drones,
this need is particularly acute: if such a system experiences a
failure that causes the system to lose the ability to continue
normal flight, it poses a severe risk for anything below it.
This is because flying systems necessarily have a certain
amount of potential energy in operation. If such a system is
able to reason about the consequences of possible failures,
given its current environment and state, it could result in
being a safer system.

A crucial aspect to the safety of human-operated machines
is the ability of the operator to understand the safety conse-
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quences of their actions. A safety- and consequence-aware
system is able to reason about potential actions, and could
overrule a human operator’s commands which are perceived
to be dangerous. The system may, for example, decide to
force an early landing in an unpopulated field, rather than fly
over a crowded park. The system should also constantly be
creating and storing contingency plans, which would allow
minimizing the risk associated with its current actions should
an unexpected failure occur.

Such contingency planning represents an additional layer
to the typical fail-safe systems in a system. For example, a
well-engineered system has an extremely low probability of
having a critical subsystem fail — nonetheless, it is impossible
to rule out such failures completely. The ability of a system
to continuously reason about potential failures, and responses
thereto that might minimize damage could act to reduce the
potential harmfulness of any individual failure.

A typical strategy for dealing with an emergency in
a drone is to execute a rapid landing, and come to the
ground as quickly as possible. However, it is clear that
such a strategy may be arbitrarily harmful, e.g. if a drone’s
emergency landing terminates in a children’s playground.
Instead, a system that is able to weigh the consequences of
different potential outcomes, and decide on the least-harmful
emergency behavior could be substantially safer.

Of especial interest is a system that operates with a human
in the loop. The typical assumption is that the human is
ultimately a good decision-maker, and can create “best”
strategies in the event of an emergency. However, it is clear
that this would often not be the case, e.g. if the human is
paying insufficient attention, or if the human is, in fact,
the cause of the failure (e.g. the human loses sight of a
vehicle being remotely operated). In such situations, the
system should be able to reason about the competency of
the human in the loop, and the potential consequences of
executing the human’s commands versus overriding them
with an autonomous emergency maneuver.

II. PROPOSED CONSEQUENCE AWARENESS FRAMEWORK

We propose to develop a simple but extensible system
allowing a drone to detect whether it is in a safety critical
environment. This will be done by combining visual cues,
the drones state estimate, and a pre-existing map of hazards.
We will also work on algorithms that allow the drone to
create, in real-time, a set of alternative safety actions, each
action based on a different contingency or fault occurring.
For example, the system will constantly evaluate motions



from where it predicts it will be in the near future to positions
it has identified to be safe to land at. If an emergency arises,
e.g. the human operator is no longer capable of flying the
vehicle, it executes one of its contingency plans.

Depending on the real needs, the requirements for Conse-
quence Awareness may be quite different. In this paper, we
consider the following scenarios. As shown in Fig. [T} there
were several fields of research which motivated the creation
of Consequence Awareness in UAV.
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Fig. 1: Diagram of intersecting fields of research which
comprise Consequence Awareness.

A. Surrounding Awareness

It is important that the drones are aware of their surround-
ing environment. Only when drones know their surrounding,
consequences of specific actions can be predicted. This
information includes the drones position in the world, com-
bined with pre-existing maps and information from onboard
sensors. Specifically, onboard cameras will be used to detect
and characterize the area around the drone, allowing to detect
e.g. whether the drone is flying over an area where the
consequences of failure are likely be severe.

By combing object detection in 3D [1], [2] with a simul-
taneous localization and mapping system [3], [4], so that we
can go one step further than single image based surrounding
aware. This object-based 3D map will not be targeted to
have a perfect 3D representation of the environment. Instead,
it detects, calculates and remembers the location, velocity,
rough size, category label of objects and consequence sever-
ity if they are crashed into. This abstracted map enables the
possibility of real-time onboard processing and long-term
storage. With velocity information of dynamic objects, it is
made possible to reason on potential collisions and avoid
them in advance.

B. Pilot Skill Level Awareness

Among many possible consequence awareness scenarios,
our first focus is on using the pilots command signal to
reason if the drone is under safe control of an experienced
pilot or not. We conduct an offline analysis to determine

signal signatures under various skill levels of a human pilot.
And we propose to use Generative Adversarial Nets (GANs)
for this analysis.

The idea of GANs is proposed in [5] by Goodfellow et
al. Tt is a framework for estimating generative models via an
adversarial process, during which a generative model G that
captures the data distribution, and a discriminative model
D that estimates the probability that a sample came from
the training data rather than G are trained simultaneously.
Coupled with deep convolutional neural nets (CNNs), deep
convolutional generative adversarial networks (DCGANS) [6]
are proposed to train CNNs in the unsupervised way, yet the
learned features demonstrated their applicability as general
image representations for other tasks.

Inspired by the achievements of GANs in computer vision
and time series processing. GANs are attractive because
of its weak requirements on training data, compared to
other supervised classification algorithms. In pilot skill level
analysis, the cost for collecting data from inexperienced
pilots is high, since it is very likely that inexperienced pilots
lead to crashes and damages. We propose to use GANS to
then generate auxiliary data to enlarge the flight dataset.

C. Action Consequence Awareness

Motivated by the fact that even skilled pilots may make
mistakes in a complicated environment, such as landing a
drone close to a road when strong wind appears. It will be
very helpful if there is a system available to check each
control input and give warning on or even override dangerous
actions. We envision that reinforcement learning will be use-
ful for action level consequence awareness. Reinforcement
learning is shown to be capable of achieving super-human
performance on many tasks [7], [8], [9], such as that the Al-
pha Zero can learn to play the game of the Go by adversarial
self-play without any human data input [8]. Reinforcement
learning agents can be trained for specific piloting tasks, such
as landing and flying at low altitude. And then use the model
learned to evaluate the safeness of control actions from pilots.
With a simulator that can detection collision and crashing,
a learning agent can try different control inputs and observe
the corresponding consequences. It is also cost-efficient to
setup different dynamic environments so that the model can
generalize well at different cases.

D. Pilot Emotional Status Awareness

We make this awareness an online detection and perform
real-time alert (in the form of an audible tone, to remind the
pilot to re-focus). For pilot wrist band signal, we perform
a similar investigation. This will use some similar expertise
developed in previous work [10], [11].

Affective Computing can help improve current UAS safety
systems providing them intelligent and dynamic characteris-
tics. Affective Computing(AC) is the process of detecting
human emotional state based on a variety of data types [12].
These data types can include visual data like facial recogni-
tion, physical data like body position or body language, and
collected data like surveys or flight logs [12], [13].



III. RELATED WORK

Can or should a drone understand the emotional status of
its human pilots? On May 31, 2013, Yahoo News reporter
Liz Goodwin quoted the last author of this paper in [14]:
Drones can also take the heart rate and other physiological
data from their on-the-ground operators to gauge their stress
levels. The system could be trained to take over from the
human operator if it decides his or her stress levels are too
high or that the operator is making irrational decisions. This
idea motivated the study in [10] and rooted the idea of this
project and the part of the thesis [15] where human drone
operator’s stress was shown to be able to get quantified by
using operator’s heart rate variability (HRV) analytics. Here
we further review a few relevant studies as prior art.

A. Human Emotional UAS Encoding

The research conducted in [16], the UAV systems were
encoded with predetermined emotional states which affected
the flight path of the UAV. Participants viewed flights for
each emotional state [16]. Each participant rated the emo-
tional state of the UAV and the operator [16]. The goal in [16]
was to create a visual observer an emotional state or intention
of the drones behavior. This research falls short by not
allowing the emotional stated to be dynamically defined by
the pilot’s input. From an outward appearance, our research
will resemble the work by [16], due to the UAV limiting
the pilot’s actions therefore appearing to an emotional state.

B. Learning Drone Action and Action Consequence

In the research performed by [17] uses neural networks
to predict the intent of UAS pilots [17]. As in the research
conducted by [16], [17] is based on the observer’s point of
view i.e. security cameras feeds, human observer. In [17],
the observer is focused on the pilot rather than the UAS.
Video data was processed into two separate regions, one to
identify the pilot and the other to identify the object used
to control the UAS [17]. Then Neural Networks determined
the pilots actions or intent by determine the movement of the
device they used to control the UAS. This work shows how
effective the neural network can learn the pilot’s intentions
from their observed behavior. In contrast, our Generative
Adversarial Networks will have the task to help identify the
pilot’s experience level.

C. Fault Detection and Diagnosis and Neural Networks

In reviewing previous attempt to instill fault detection and
diagnosiss techniques in [18] cover the major aspects of the
field including UAV. In the field of UAV there is focus on
the faults related to actuator, sensor and propeller damage
[18], [19]. Attempts have been promising in controlling the
UAV with Neural Networks techniques as seen in [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29]. Within this
body of work, there have been advances on controlling the
UAV class of nonlinear systems. Examples of Linearization
by use of Neural Networks as seen in [24], [26], [29]. .
The use of Neural Networks have been combine with other
Nonlinear stabilization theory of Lyapunov like in in [28],

[30], [23]. In inversion techniques on the nonlinear system
are seen in [20], [27], these were used to help control the
dynamics of the vehicle. The work of [25], [28] use of back
propagating networks in controlling position or creating a
dynamics observer, respectively. The research in [21], [22]
use Neural Networks to control the UAV altitude. In [20] the
vehicles control was accomplished with a Recurrent Neural
Network. In contrast the work in [22], was accomplished us-
ing a mission-based approach and a Reinforcement Learning
model.

IV. METHOD FOR PILOT SKILL LEVEL AWARENESS

In addition to the overall consequence awareness frame-
work, a method for pilot skill level awareness is proposed. In
the proposed method, pilot skill level awareness is achieved
with supervised recurrent neural networks (RNNs) classifier,
while its training data are partially generated by GANS.

We use RNNs with long short term memory (LSTM) [31]
units as the classifier so that it can handle variable length
data. RNNs also provide the model with the ability to model
temporal relationship between different input dimensions. An
LSTM unit is defined as in eq. (I):
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RNNs used in this work are stacked LSTM units with a
sigmoid function on the ouput. We denote it as a function
approximator:

p = fo(z|We), 2

where W is a parameter collection from W, as in eq. (E]) of
all LSTM units. « is the flight signal data. p is the probability
that data «x is from a skilled pilot. This model is trained with
cross-entropy loss, as in eq. (3), using stochastic gradient
descent.
N
loss = Z —(yilog(pi) + (1 — yi)log(1 —pi)).  (3)
i=1
After the training process, we apply the RNNs model
fo(x|We) to classify flight signal. It can calculate the
probability of a signal series coming from a good pilot or
an inexperienced one.

Due to limited flight data available for training the RNNss,
we propose to use GANs to generate auxiliary data to assist
training classifier. We use a network structure similar to
the WaveGAN [32], which is derived from DCGAN by
converting 2D convolution kernels to 1D while preserving the
number of parameters per kernel. Specifically, as in Fig.
we use five layers for the generator G. Three of them are
transposed convolution with kernel size 16 and stride 4 or 2
for up-sampling. While the first layer is a dense projection
and the last layer is a 1D convolution of kernel size 25
for output channel number reduction. The discriminator D
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Fig. 2: The generator used for creating auxiliary data. A
100 dimensional Gaussian distribution Z is projected to a
128 channel feature map with sequential length 16. Three
transposed convolutions then converts this feature map into
512 length feature map. The final convolutional layer then
transfer it into a 4 channel 512 time step RC signal.

consists of four 1D convolutional layers with kernel size
16 and stride 4 and 2 (first layer). We train the GANs
model by alternating between training discriminator by min-
imizing — log(D(x)) and training generator by minimizing

—log(D(G(2)).

(b) © (d)

Fig. 3: The experimental flight space available at UC Berke-
ley is shown in (a), while three different available flight
platforms are shown in (b)-(d): (b) shows the Bitcraze
Crazyflie 2.0 [33], a 30g open-source quadcopter, and (c)
shows the Parrot Bebop 2 [34], a consumer drone. A large,
custom-made quadcopter is shown in (d).

V. TRAINING DATA COLLECTION

As we mentioned, to acquire pilot skill level awareness, it
is necessary to collect flight data with ground-truth available
as a labeled dataset by purposely designed real flight tests.
The following subsections introduce the details of both data
collections methods.

A. Indoor Drone Tests

At UC Berkeley, we have access to a controlled, indoor
flight space where we may conduct experiments on robotic
flight, and human control thereof. The space, and some
experimental vehicles, is shown in Fig. 3] The lab setup
comprises a room of dimension 7 x 6 X 5m, equipped with
eight motion capture cameras for high-rate, high-fidelity state
estimation. In this space, the team operates a number of
different aerial robots, both of standard and custom designs,
and at a variety of scales, ranging from less than 50g to more
than 1.2kg.

Off-the-shelf components are leveraged whenever possi-
ble. The Robot Operating System (ROS) [35] is used as
PC-side middleware, specifically connecting different com-
ponents together and allowing for the recording (and later
analysis) of experimental flight data. A custom low-level
firmware is run on all vehicles, based off of the open-source
Pixhawk project [36]. Custom vehicles use the Crazyflie
hardware [33], which provides key electronic components
in a compact, low-mass form factor.

In addition to operating fully autonomously, the exper-
imental space allows for operation with human pilots, at
various levels of autonomy. This means that the system may
be set up for testing a human pilot’s capabilities, using the
extensive data logging capabilities for capturing data for
either online or later offline analysis.

VI. EXPERIMENTS

We started by manually collecting and labeling data. We
labeled 300 flight logs, while 145 of them are positive and
the rest 155 are negative examples. Then data is divided into
a training set and a test set. The test set contains 60 logs
in total with 30 in each class. We truncated data to the first
30 seconds for the training of classifier and 51.2 seconds for
the training of GANSs.

Each flight data log has 13 channels, including z, y and 2
for local position estimate, speed v, v, and v,, Yaw angle
W, pitch ¢, roll 8, RC inputs channels RCy, RCy, RC, and
RC}y,. We take RC channels: RCy, RCy, RC, and RCyy,
for the current experiments.

With the dataset available, we train RNNs with different
hyper-parameters, including hidden layer number, hidden
layer size (HLS) and flight log channel combination. We
use 2, 4, 8, 16 as hidden layer number options and 64, 128,
256, 512 as HLS options. The best average performance we
get is 64.0% test accuracy by a model of 2 hidden layers x
HLS 128. We use this model as a baseline.
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Fig. 4: Visualization of real and generated logs

Second, we train a GANs model on flight data from
experienced pilots in training set and then generate 200 new
logs to enlarge training set. Then we do the same with
another GANs instance on inexperienced pilot data. Fig. [
includes examples from real fight logs and generated flight
data. With all the data available, we train a classifier without
model selection, we get 80.8% classification accuracy on
average, which shows improvements on 64.0% from the
baseline. This shows that it is beneficial to the training of
pilot skill level classifier by generating auxiliary flight data
with GANs, when only a limited amount of labeled data is
available.

VII. CONCLUSION

We outline a new framework aiming to add an additional
layer of safety to aerial systems operated by human pilots.
The system will endow a UAS with the ability to reason
about its safety, and the consequences of safety failures dur-
ing its operation. We also proposed a method for pilot skill
level awareness. This method utilizes generative adversarial
networks to enlarge the limited amount of training data,
which shows its effectiveness by improving pilot skill level
classification accuracy in our experiments.
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