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Abstract The ability to generate feasible and safe tra-

jectories is crucial for autonomous multicopter systems.

These trajectories can ideally be generated on low-cost,

embedded computational hardware, and exploit the sys-

tem’s full dynamic capabilities while satisfying constraints.

As operations increasingly focus on operation at high

speeds, or in dynamically changing environments, strate-

gies are required that can rapidly plan and re-plan tra-

jectories. This article reviews typical approaches for tra-

jectory generation of aerial robots, with a focus on mul-

ticopters, and discusses various approximations that

may be used to make the problem more tractable. The

strategy of planning in higher derivatives of the vehicle

position (such as acceleration, jerk, and snap) is dis-

cussed in depth. We also discuss the related issue of

expressing system limitations and constraints in these
derivatives. Finally, possible future directions are dis-

cussed.

Keywords Multicopters · UAV · Planning · Differen-

tial flatness

1 Introduction

Aerial robots are increasingly routinely used in every-

day operations, accomplishing tasks such as remote sens-

ing, surveillance, and delivery of goods and people. Con-
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tinuing technological development, especially of energy

storage, and development of the regulatory environ-

ment means that such systems may soon be common-

place. A crucial requirement for their autonomous op-

erations is the ability to plan motions to achieve goals,

especially trajectories moving them through space. Due

to their mechanical simplicity, and the ability to hover

in place when required, the most common aerial robots

are multicopters, especially quadcopters.

A typical trajectory generation problem consists of

moving a single multicopter from an initial state (typi-

cally described as a position, velocity, orientation, and

angular velocity) to a final state. The final state may

be as detailed as the initial state, or it may only spec-

ify some components (such as an emergency stopping

trajectory that requires simply zero final velocity). The

resulting trajectory must respect the system dynam-

ics, and potentially avoid additional constraints, such

as collisions. The satisfaction of system dynamics and

constraints is to be understood as satisfying some suf-

ficiently accurate approximation of the true system ca-

pabilities (that is, sufficiently accurate for the problem

at hand). Moreover, the available resources (e.g., com-

putational power and computation time) are typically

important considerations, as is the ability to accurately

model the system and disturbances.

This article focuses on model-based approaches, that

is, generation methods that rely on first-principle mod-

els of the multicopter systems to generate trajectories.

An additional focus is on low computational complex-

ity, so that trajectories may be computed on constrained

hardware.
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2 Dynamics and low-level control

We briefly review the equations of motions governing

the motion of a multicopter, using the example of a

quadcopter with propellers located symmetrically about

the center of mass, with fixed, parallel axes of rotation.

The model may be easily extended to other classes of

multicopter, such extensions are briefly discussed.

The vehicle body’s six degrees of freedom are cap-

tured in the position vector x = (x1, x2, x3), expressed

in an inertial frame, and the rotation matrix R that

relates the body-fixed and inertial frames. The com-

pact notation x = (x1, x2, x3) is used to express the

elements of a column vector. These evolve over time

as functions of the translation velocity v and angular

velocity ω = (ω1, ω2, ω3) as

ẋ = v, Ṙ = R S(ω) (1)

where S(a) is the skew-symmetric matrix version of the

cross product, so that a× b = S(a) b for any vectors a

and b.

Considering for simplicity a quadcopter, as illus-

trated in Fig. 1: the vehicle is actuated by four propeller

forces fi acting at displacements ri from the center of

mass. The propellers point along the body-fixed e3 di-

rection, and produce a pure moment τi about their axes

of rotation in addition to the force. This moment is typ-

ically assumed to be proportional to the force produced.

The governing differential equations are then given as

below

ma =R e3fΣ +mg + faero (2)

Jω̇ =− S(ω)Jω +
∑
i

(S(ri) e3fi + e3τi) + τaero (3)

with a the acceleration of the vehicle, g the accelera-

tion due to gravity as expressed in the inertial coordi-

nate frame, and faero aerodynamic forces in addition to

the simple propeller model (such as propeller in-plane

forces). Furthermore, J is the mass moment of iner-

tia, and τaero any aerodynamic torques acting on the

Fig. 1 Dynamic model of a quadcopter, acted upon by grav-
ity g, a thrust force f pointing along the (body-fixed) axis e3;
and rotating with angular rate ω = (ω1, ω2, ω3), with its po-
sition in inertial space given as (x1, x2, x3).

system in addition to those captured by the propeller

model. We use the short-hand fΣ =
∑
i fi for the total

thrust force.

Multicopters with more than four propellers with

parallel thrust directions will have the same equations

as above, except that the summation will be over more

than four propellers. Vehicles with thrust directions

that are not parallel also exist, and such designs may

have various benefits. For quadcopters, this may im-

prove control authority and energy efficiency (Holda

et al. 2018). When using more than four propellers, this

reduces (or completely eliminates) the system’s under-

actuation, see e.g., the hexacopter of Jiang & Voyles

(2014) with improved disturbance rejection, or the om-

nidirectional vehicle of Brescianini & D’Andrea (2018).

Vehicles with fewer than four propellers can also be con-

structed, but require special considerations especially

with regards to attitude control, for a discussion see

e.g. Mueller & D’Andrea (2016).

The motor forces vary as a function primarily of

the respective propeller angular velocity, and may be

accurately modelled as varying proportionally to the

angular velocity squared, though more detailed models

exist considering, e.g., relative airspeed. The forces are

typically assumed to vary instantaneously, though the

dependence on angular velocity of the propellers implies

that an instantaneous change is impossible for actual

systems with finite motor torques.

The individual motor forces are typically constrained

as fi ∈ [fmin, fmax], with the upper limit fmax following

from the maximum torque characteristics of the motors,

and the lower limit fmin following, e.g., from the capac-

ity of the speed controllers driving the motors to oper-

ate at low rotational speeds, so that usually fmin > 0.

For brushed motors, as is common on low-cost and in-

expensive systems, typically fmin = 0, while for systems

with variable pitch or reversible propellers we may have

fmin < 0.

Closed-loop control is commonly achieved with nested

control, especially by considering the angular velocity

of the body as a high-bandwidth subsystem, and treat-

ing a target angular velocity as instantaneously achiev-

able. This simplification, similar to the assumption of

instantaneously achievable propeller forces, is here jus-

tified by noting that the angular velocity is fully actu-

ated, so that the nonlinear terms may be compensated

by feedback linearization, and that the achievable an-

gular accelerations are very large due to the vehicle’s

low mass moment of inertia (as mass is typically con-

centrated at the center) and high torques (due to large

moment arms).
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3 Trajectory generation

For a general dynamic system, the goal of trajectory

generation is a control input sequence, which would

move it from an initial state in order to achieve a goal.

This is typically posed as an optimization problem,

minimizing some cost function. As the system dynamics

are expressed as differential equations, the problem is

most directly stated in continuous-time searching over

the space of functions. Alternatively, the system dy-

namics may be approximated in discrete time, so that

the optimization is now over a finite dimensional space.

In both cases closed-form solutions are difficult to solve

for, and general problems typically can only be solved

through numerical approaches. As these generic prob-

lems tend to be non-convex and non-linear, brute-force

numerical solutions tend to struggle, especially when

computational power is limited. However, by exploit-

ing the dynamic characteristics of multicopters, vari-

ous transformations are possible that make the problem

more easily solvable.

A key factor in the difficulty of finding a solution

is the level of abstraction applied to the system dy-

namics. This is often implicitly done through low-level

control loops, where certain states are treated as re-

sponding instantaneously to track desired values. The

lowest level inputs typically considered are the electric

signals to the motors, e.g., as a voltage level applied

over a motor. When the aerial vehicle is equipped with

high-performance motor speed controllers, the motor

speeds (equivalently, the propeller forces) may be used

as input; the next level up assumes sufficiently fast an-

gular dynamics to allow the angular velocity to be used

as input. Coarser models still consider the system as a

double integrator, with acceleration as input (assuming,

effectively, instantaneous changes in attitude), or most

crudely as a single integrator with translational veloc-

ity as input. Increasingly coarse models have multiple

advantages: they reduce the dimension of the planning

system’s state space (leading to smaller problems that

are easier and faster to solve), they may hide nonlinear-

ities (e.g., treating angular acceleration as input rather

than torque avoids the nonlinearities in the angular ve-

locity dynamics), and they may hide constraints (e.g.,

low-level input constraints are not visible if planning is

done at higher levels).

A very successful approach for multicopters is to

plan in some derivative of the position and consider

each translational axis independently, thus solving three

trajectories, each substantially less complicated. An early

example of this kind of approach is given in Kalmár-

Nagy et al. (2004), applied to a surface robot. The dif-

ferential flatness properties of multicopters means that

the actual inputs and states can be recovered straight-

forwardly from these position derivatives, though for

uniqueness a rotation about the thrust axis is also re-

quired. A discussion on the differential flatness of mul-

ticopters is given in Mellinger & Kumar (2011), while

general discussion on flatness may be found in Fliess

et al. (1995) or Murray et al. (1995). Due to the super-

linear complexity scaling of most optimization problems

in the problem size, this spatial decomposition typically

leads to a dramatic reduction in the required computa-

tional time: an example of quadcopter trajectory gener-

ation using this approach coupled with time discretiza-

tion is given in Mueller & D’Andrea (2013). An obvi-

ous concern with spatial decoupling is the difficulty of

decoupling constraints acting on the system – the de-

coupling of input constraints is discussed below, and

obstacles are unlikely to present as neatly decoupled

along user-specified directions.

3.1 Decoupled planning and constraints

When a decoupling approach is used, it is necessary

to relate the planning states to the allowable inputs.

A first requirement may be that the total thrust along

the trajectory does not exceed the maximum available

value. From (2), we have

|fΣ |2 = ‖ma−mg − faero‖2 (4)

Assuming, for simplicity, that the aerodynamic distur-

bances are negligible, the thrust bound, through (4),

may be encoded per-axis by specifying conservative box

constraints: Let, e.g., āi be such that
(∑

i

(
ā2i
)) 1

2 is less
than the maximum allowed thrust, then the following

decoupled bounds guarantee total thrust feasibility:

−āi ≤ eTi a ≤ āi (5)

Ensuring that the trajectory does not violate lower-

bounds on the thrust (relevant when fmin is strictly

positive) is more difficult. This may be achieved by

specifying an additional lower bound on the vehicle’s

acceleration along the gravitational direction:

eT3 a ≥ −‖g‖+
1

m

∑
i

fmin (6)

This constraint is very conservative, as it effectively lim-

its the tilt of the vehicle’s thrust axis and does not, for

instance, allow the vehicle to rotate its thrust axis to

point downwards.

Limiting the trajectory jerk j = ȧ allows for apply-

ing bounds on the the angular velocity and change in

total thrust along the motion, but this relationship is
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substantially more complex than the acceleration. Tak-

ing the time derivative of the translational dynamics

(2) and neglecting for simplicity changes in the aerody-

namic forces yields

mRT j = −S(e3)ωfΣ + e3ḟΣ =

−ω2fΣ
ω1fΣ
ḟΣ

 (7)

From this equation it is clear that a simple bound on the

jerk (either per-axis, or total) is insufficient to bound

the angular velocity along the trajectory unless addi-

tionally a minimum bound on the thrust is specified.

To make statements regarding individual motor forces,

an additional derivative of position is required, the snap

s. Taking the derivative of (7) gives

mRTs =S(ω)
2
e3fΣ + S(ω) e3ḟΣ − S(e3) ω̇fΣ

+ S(ω) e3ḟ + e3f̈Σ
(8)

where the angular dynamics of (3) can be substituted

for ω̇ to relate motor forces to snap. As before, a bounded

(per-axis or total) snap does not imply that the sys-

tem’s states or inputs remain bounded – one exam-

ple is that the angular acceleration component paral-

lel along the body’s e3 axis may become unbounded

whilst the snap remains bounded. A more subtle ex-

ample is of a vehicle starting at rest at time t = 0,

with acceleration trajectory a(t) = gt. In such a mo-

tion, the vehicle starts at rest with fΣ = m ‖g‖, at

t = 1 is in free-fall, and at t = 2 is thrusting downwards

with fΣ = m ‖g‖. For this motion the total thrust re-

quirements are benign (ranging between zero and the

hover thrust), the jerk is constant at j = g, and the

snap is identically zero. However, this is a physically

impossible trajectory, as the thrust direction at t = 1

must rotate instantaneously from pointing vertically

upwards to pointing downwards. Thus, näıvely planning

trajectories with bounded position derivatives may re-

sult in motions requiring unbounded motor forces, or

unbounded angular velocities. Ensuring that the forces

remain bounded would require simultaneously consid-

ering all axes, thereby negating the main benefit of the

original decoupling. However, the above issues may not

be common in many applications, and planning sepa-

rately in position derivatives has been very successful

with wide application in the literature.

3.2 Closed-form solutions

Under certain circumstances, closed-form solutions can

be found for trajectories. Such solutions are typically

computationally inexpensive to generate, but are re-

stricted to work in specific circumstances. These kinds

of trajectories naturally lend themselves to being used

as motion primitives, which can be concatenated to-

gether to achieve complex goals. Moreover, if they are

sufficiently inexpensive to compute, they may be used

in sampling-based approaches where their computational

complexity is traded off against their specialized nature.

An example of exploiting computationally cheap prim-

itives is given in Mueller et al. (2015): here, a quad-

copter trajectory primitive is proposed for state-inter-

ception trajectories (that is, with fixed final times) that

minimize the average jerk along the motion. From (7)

it can be seen that minimizing jerk along a motion

can be interpreted as reducing the product of angular

velocity and total thrust; intuitively leading to qual-

itatively “nice” trajectories. The closed-form solution

of the trajectories reduces to a simple affine transfor-

mation of the initial/final states; and feasibility (inter-

preted here as collisions with planar objects in space;

minimum/maximum total thrust values; and maximum

angular velocity) is evaluated using a recursive scheme.

In total, a motion primitive can be generated and eval-

uated for feasibility in approximately 1µ s on a laptop

computer, or 100 µ s on a simple micro-controller. This

computational speed then immediately lends itself to

searching over complex spaces, and operation in very

dynamic situations.

3.3 Numerical solutions

Other approaches to trajectory generation rely on nu-

merical optimization tools. Such numerical solutions

can be posed directly on the nonlinear aerial robot dy-

namics, and thus avoid the complexities of spatial de-

composition, etc. A disadvantage of such approaches

tends to be substantially higher computational loads,

though tools such as the ACADO toolbox (Houska et al.

2011) allow for MPC implementations that can be run

on embedded hardware.

Because the problems can be posed in a generic

fashion, it is easy to include other objectives into the

trajectory generation problem. One example of this is

to include knowledge of the multicopter’s sensors, and

generate motions that not only satisfy feasibility con-

straints related to inputs and collisions, but also ensure

that motions are informative to the system’s sensors.

An example that optimizes for visibility of features to

assist in visual localization is given by Falanga et al.

(2018), or for optimizing exploration gain in Papachris-

tos et al. (2017).

An example using a specialized numerical solver to

compute minimum time trajectories is given in Hehn

et al. (2012), specifically used to argue about funda-

mental dynamic limits of quadcopters.
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3.4 Computational speed and receding horizon control

If computing a trajectory requires a substantial time,

compared to the system dynamics, the trajectory is typ-

ically used as a reference trajectory tracked by a sep-

arate feedback controller. However, if the computation

is sufficiently fast, trajectories may be continuously re-

planned as the system moves. Such receding horizon im-

plementations have multiple performance advantages,

and allow systems to naturally react to disturbances,

or to respond in changes in objective (e.g., the sudden

appearance of an obstacle) – see, e.g., Chen et al. (2016)

and Nägeli et al. (2017).

4 Summary and future directions

Trajectory generation for multicopters benefits from the

same technological advancements that enable auton-

omy for an ever-increasing set of robots, primarily in-

creases in computational power (and a reduction in

mass, and power requirements, for computation), and

improvements in generic numerical optimization tools.

When sufficient computational power is available, this

allows solving relatively straight-forward encodings of

problems, including constraints on inputs and states.

Where computational power is constrained, or time is

of extreme importance, it is often useful to create meth-

ods that rely on specific characteristics of multicopters,

such as the spatial decoupling discussed earlier.

A relatively open area of future work is to more

tightly couple the trajectory planning component of au-

tonomy to the sensing systems. Typical state-of-the-art

approaches decouple the planning problem from the es-

timation problem: for example, a map of obstacles may

first be created, and this map is then used for planning

in a second step. This approach is very good at isolating

complexity, and follows typical engineering practise to

‘divide and conquer’ complex problems. However, much

like designing a state feedback controller independently

of an estimator to regulate a plant, such a decomposed

approach may have a substantial performance penalty

compared to a unified approach when uncertainty is

taken into account (consider H∞ output-feedback con-

trol vs. LQG control – see, e.g., Zhou & Doyle (1998)).

This may take the form of planning trajectories directly

based on the sensors; e.g., planning motions in a laser

point-cloud. If combined with low computational com-

plexity methods, this may lead to very responsive be-

havior that naturally takes uncertainty in the sensors

and system into account.

Another area of relevance for future work is to plan

trajectories that take energy and power consumption

into account. This is of particular importance for mul-

ticopters, as a primary constraint to their widespread

use is limitations in range and payload due to modest

energy budgets. Examples exploring this include Ware

& Roy (2016) and Tagliabue et al. (2019). Trajectories

for multiple vehicles operating simultaneously are also

challenging, due to increasing size of the state space

and mutual collision avoidance; for large collections of

vehicles this remains an open problem. Another useful

direction would be strategies that allow an operator to

directly specify safety objectives (e.g., by parametrizing

the risk to third parties from certain maneuvers).

5 Cross-References

– Differential Geometric Methods in Nonlinear Con-

trol

– Iterative Learning Control

– Model Predictive Control

– Underactuated Robots

– Unmanned Aerial Vehicles

6 Recommended reading

A good overview of convex optimization can be found

in Boyd & Vandenberghe (2004), and a discussion of

tools specifically for embedded application is given by

Ferreau et al. (2017).

A good overview of multicopter modeling and con-

trol is given by Mahony et al. (2012), with more spe-

cialized models used for e.g. fault tolerance in Mueller

& D’Andrea (2016).

Learning may be applied to aid in trajectory track-

ing, some examples of this use frequency based methods

Hehn & D’Andrea (2014) or deep neural nets Zhou et al.

(2017).
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