
Enhancing Quadcopter Capabilities via Design and Control

by

Nathan Leo Bucki

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Assistant Professor Mark Mueller, Chair
Professor Kameshwar Poolla

Associate Professor Anil Aswani

Fall 2021

Enhancing Quadcopter Capabilities via Design and Control

Copyright 2021
by

Nathan Leo Bucki

1

Abstract

Enhancing Quadcopter Capabilities via Design and Control

by

Nathan Leo Bucki

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Assistant Professor Mark Mueller, Chair

In recent years, quadcopters have gained remarkable popularity in a wide range of indus-
tries. Given that the utility of quadcopters has already been extensively demonstrated, this
dissertation explores changes to the design and control of conventional quadcopters which
either enable operation in new environments, allow for novel tasks to be performed, or reduce
computational hardware requirements.

Two novel designs are presented in this dissertation. First, we explore the use of angular
momentum to reduce the sensitivity of a vehicle to torque disturbances. We show both
theoretically and experimentally how torque disturbance sensitivity monotonically decreases
with increasing net angular momentum of the vehicle when using an appropriately designed
controller, and discuss how this effect scales with vehicle size. Second, we consider the use
of passive (i.e. unactuated) mechanisms to expand the types of tasks a quadcopter can
perform. Specifically, we demonstrate how a vehicle with freely rotating arms can change
shape mid-flight, allowing for traversal of narrow passageways, simple manipulation, and
perching behaviors.

Next, two algorithms are presented which enable autonomous flight in known and unknown
environments. Both algorithms are focused on improving the time required to check whether
a given trajectory collides with the environment, reducing the computational power require-
ments of onboard computers used the fly the vehicle. The first method is used to quickly
determine whether a given trajectory collides with a convex obstacle, enabling the avoidance
of both static and dynamic obstacles. The second method allows for operation in previously
unseen environments by using depth images from an onboard sensor to represent the en-
vironment. Rectangular pyramids are used to partition the free-space of the depth image,
which enable highly efficient collision checking between trajectories and the environment.

Each proposed design and algorithm is demonstrated experimentally on custom hardware,
and relevant code has been made publicly available where appropriate.

i

Contents

Contents i

1 Introduction 1
1.1 Quadcopter Applications . 2
1.2 Quadcopter Design . 3
1.3 Quadcopter Limitations . 4
1.4 Dissertation Outline . 4

2 Quadcopter Dynamics and Control 6
2.1 Notation . 6
2.2 Model . 6
2.3 Dynamics . 8
2.4 Control . 9

3 Enhanced Disturbance Rejection via Angular Momentum 12
3.1 Introduction . 13
3.2 Dynamics . 15
3.3 System Analysis and Design . 18
3.4 Control . 21
3.5 Experimental Validation . 24
3.6 Conclusion . 30

4 Improved Operational Capabilities via Aerial Morphing 34
4.1 Introduction . 35
4.2 System Model . 38
4.3 Control . 41
4.4 Experimental Vehicle Design . 47
4.5 Experimental Results . 53
4.6 Conclusion . 58

5 Computationally Efficient Trajectory Generation in Known Environments 59
5.1 Introduction . 60

ii

5.2 System model . 61
5.3 Algorithm for Static Obstacle Collision Detection 62
5.4 Performance Measures . 65
5.5 Dynamic Obstacle Collision Detection . 67
5.6 Experimental Results . 68
5.7 Conclusion . 70

6 Computationally Efficient Trajectory Generation in Unknown Environ-
ments 72
6.1 Introduction . 73
6.2 System Model and Relevant Properties . 74
6.3 Algorithm Description . 76
6.4 Algorithm Performance . 81
6.5 Experimental Results . 86
6.6 Conclusion . 88

7 Conclusions and Future Work 90
7.1 Future Work . 91

Bibliography 93

iii

Acknowledgments

I would like to first and foremost thank my parents for their unwavering support not only
during my time at UC Berkeley, but throughout my entire academic career. Your selfless
encouragement to pursue my own path has been an invaluable foundation for growth in all
parts of my life, and for this I will be forever grateful.

I am also particularly grateful for the fantastic mentorship given by my advisor Mark
Mueller. I appreciate your guidance in areas both related to my research as well as my own
personal goals, and I hope to continue to uphold the same level of excellence you instilled in
me throughout the rest of my career.

To all of my labmates and friends at UC Berkeley, thank you for making my time here so
memorable and fun. Your help and friendship has been a constant source of encouragement
that I will not forget.

Finally, this work would not have been possible without funding from the following
sources: the National Science Foundation Graduate Research Fellowship under Grant No.
DGE 1752814, the Berkeley Fellowship for Graduate Study, the Berkeley DeepDrive project
‘Autonomous Aerial Robots in Dense Urban Environments’, China High-Speed Railway
Technology Co., Ltd, and the Powley Fund. The experimental testbed at the HiPeRLab
is the result of contributions of many people, a full list of which can be found at hiperlab.
berkeley.edu/members/.

hiperlab.berkeley.edu/members/
hiperlab.berkeley.edu/members/

1

Chapter 1

Introduction

Quadcopters (also know as quadrotors, quadrocopters, or sometimes colloquially as drones)
are a class of aerial vehicle which use four fixed-pitch propellers to perform various aerial
maneuvers, typically including vertical takeoff and landing, hovering, and agile flight. An
example of a typical quadcopter is shown in Figure 1.1. These vehicles have been shown
to be capable of performing a number of useful tasks, including search and rescue, pack-
age delivery, cinematography, inspection, as well as many additional functions. Although
quadcopters have been proven to be useful machines, their capabilities are inherently limited
(like all robotic systems) both by their physical design (e.g. their dynamic properties and
size/shape) as well as the algorithms used to control them (e.g. due to limited available
onboard computational power).

This work seeks to expand the capabilities of quadcopters on both fronts. First, we

Figure 1.1: Standard quadcopter equipped with various sensors.

CHAPTER 1. INTRODUCTION 2

explore how relatively minor design changes to the physical structure of a quadcopter can
allow the vehicle to operate in environments and perform tasks not previously achievable us-
ing conventional designs. Then, several novel algorithms are presented which enable vehicles
with severely limited onboard computational power to operate autonomously in cluttered en-
vironments. The utility of the proposed design changes and control algorithms are compared
to those of a conventional quadcopter, allowing for a clear assessment of their usefulness.
For example, if a proposed design requires e.g. a substantially larger vehicle mass than nor-
mal, it will be shown that the improvement in the effectiveness of the vehicle outweighs any
adverse effects of the change (e.g. reduced flight time). However, as shown the the following
chapters, a majority of the techniques proposed in this dissertation either improve vehicle
capabilities (e.g. by enabling vehicles to perform novel tasks) or reduce hardware require-
ments (e.g. by reducing onboard computation) in exchange for relatively minor and often
negligible trade-offs in other aspects of the vehicle design. Finally, because this dissertation
is primarily concerned with techniques that tangibly impact the utility of quadcopters, each
concept proposed in this dissertation is demonstrated using flight experiments.

The remainder of this chapter seeks to (1) provide examples of tasks which quadcopters
(and multirotors in general) are particularly well-suited to accomplish, (2) discuss the funda-
mental design choices that enable quadcopters to perform these tasks, and (3) examine the
shortcomings of quadcopters due to these fundamental design choices. Finally, an outline
of this dissertation is presented at the end of the chapter, highlighting how the presented
shortcomings can be addressed.

1.1 Quadcopter Applications

Recently quadcopters have become the focus of a significant amount of research effort, leading
to a large number of different commercial applications. Perhaps the most widely used appli-
cation of the quadcopter is as a mobile platform for maneuvering various sensors into difficult
to reach areas. For example, quadcopters are favorable platforms for performing search and
rescue operations in environments that may be difficult for humans or ground-based robots
to survey in a timely manner [1] [2]. Similarly, quadcopters are ideal for monitoring dynam-
ically changing disasters such as wildfires, as they can be rapidly deployed from the ground
in order to provide information to first responders regarding the extent and location of the
disaster in real-time [3].

A more routine use of quadcopters is to perform aerial imaging [4], which can be used to
quickly obtain e.g. geographic/topological data of a large section of land [5]. Furthermore,
quadcopters are well-suited to perform surveillance operations such as monitoring crowds
[6] or international borders [7]. Commercially, quadcopters have also been shown to be
exceptionally useful in performing inspections of buildings and infrastructure that would
otherwise be difficult and/or hazardous to inspect manually [8].

The ability for quadcopters to be flown autonomously through cluttered environments
has additionally become a source of great interest in recent years. For example, the ability to

CHAPTER 1. INTRODUCTION 3

fly in close proximity to obstacles allows for e.g. higher resolution images to be taken during
inspection tasks or for the vehicle to fly though complex environments such as tunnels or
other indoor spaces [9]. Such flight often requires traversal of tight spaces, and the agility of
the quadcopter has been show to enable the traversal of narrow gaps as shown in [10] and
[11].

1.2 Quadcopter Design

Although there are many reasons that quadcopters have become commonly used tools to
accomplish the tasks described in the previous section, here we focus on the following two
key aspects of their design:

• No complex mechanisms are required for basic operation

• All components required for basic operation are relatively low-cost

In other words, when compared to other methods of accomplishing the same task, quad-
copters have the advantage of generally being simple and cheap.

The simplicity of the quadcopter is evident when comparing it to another vehicle capable
of vertical takeoffs and landings: the helicopter. Unlike the quadcopter, a helicopter requires
the use of a swashplate mechanism to control the pitch of the main rotor of the vehicle, lead-
ing to increase manufacturing and maintenance requirements for the vehicle. In contrast,
typically the only moving parts of a quadcopter are the four motors that drive its fixed-pitch
propellers. Similarly, although a fully actuated aerial vehicle design (i.e. a vehicle capable
of producing forces and torques in three dimensions independently from one another) can
be achieved by using additional propellers and/or mechanisms, the quadcopter design has
persisted as the dominant multi-rotor vehicle design at least in part due to its simplicity.
By using only four fixed-pitch propellers, the conventional quadcopter design minimizes me-
chanical complexity while still allowing the vehicle to perform vertical takeoffs and landings.
This lack of complex mechanisms not only reduces the manufacturing cost of the vehicle (as
the same motor design can be used to drive all four propellers), but improves reliability due
to the lack of extraneous moving parts.

The low cost of quadcopters has also been cited as a reason for their current ubiquity
[12]. Because most components (e.g. motors, propellers, batteries, fight controllers) can be
manufactured at scale, quadcopters can be built for relatively low costs when compared to
other robotic systems that can achieve similar tasks [13]. This has allowed for the widespread
adoption of quadcopters as not only industrial tools, but as platforms for various forms of
research and entertainment.

Thus, in this dissertation, methods of improving the usefulness of quadcopters are de-
veloped which do not significantly reduce the simplicity of the vehicle or increase its cost,
ensuring that any proposed changes to the conventional quadcopter design are aligned with
the original reasons for their widespread adoption.

CHAPTER 1. INTRODUCTION 4

1.3 Quadcopter Limitations

Partially due to their relatively simple design and low cost, quadcopters have several inherent
limitations which we seek to improve in this work. First, we note that their ability to reject
disturbances is limited by the maximum forces and torques that can be produced by the
propellers of the vehicle. This fundamental limitation prevents quadcopters from operating in
certain harsh environments that other robotic systems may be able to work in. For example,
because quadcopters are generally designed to be lightweight, they are very susceptible to
wind disturbances that can push them away from a desired position.

Another basic operational limitation relates to the size of the vehicle. Because it is often
desirable to operate quadcopters in cluttered environments with many nearby obstacles,
their size must not be so large as to prevent them from traversing areas that require them
to fly in close proximity to obstacles. Thus, there are spaces which can be inaccessible to
the vehicle due to its size, which is typically governed by the size and mass of sensors and
other actuators that the vehicle is carrying.

Finally, quadcopters commonly require significant onboard computational power in or-
der to operate autonomously in cluttered environments. Because it is favorable to use
lightweight, low-power computers onboard the vehicle in order to minimize energy usage,
the maneuverability of the vehicle can be limited by how fast such computers can analyze
incoming sensor data and compute the appropriate control actions needed to avoid obstacles.
Thus, quadcopters capable of high-speed flight through cluttered environments typically re-
quire heavier, higher-power computers in order to be able to sense and act quickly enough
to avoid collisions.

In the following chapters we propose several changes to the design and control of quad-
copters which address these limitations, and discuss the trade-offs associated with each
proposed change.

1.4 Dissertation Outline

The dissertation is organized as follows.
Chapter 2: Quadcopter Dynamics and Control. First, the basic quadcopter dy-

namics model (and associated notation) is introduced for use in subsequent chapters. The
model is derived using Newtonian mechanics, and is used as a basis for deriving the dynamics
models of the modified quadcopter designs presented in Chapters 3 and 4. This basic model
is also used to motivate the trajectory generation techniques described in Chapters 5 and
6. Finally, a standard method for controlling quadcopters is presented, which will be built
upon in subsequent chapters.

Chapter 3: Enhanced Disturbance Rejection via Angular Momentum. In this
chapter a multicopter augmentation capable of improving the vehicle’s torque disturbance
rejection capabilities is described, analyzed, and demonstrated. A momentum wheel is used
to increase the total angular momentum of the vehicle, which we show strictly improves the

CHAPTER 1. INTRODUCTION 5

torque disturbance rejection capabilities of the vehicle. A video of the proposed vehicle can
be viewed at https://youtu.be/C2fj2D_2pI8.

Chapter 4: Improved Operational Capabilities via Aerial Morphing. Next, we
describe another quadcopter design modification that enables the vehicle to change shape
mid-flight. In this case, the normally rigid connections where the four arms meet the central
body of the vehicle are replaced by unactuated hinges which have an approximately 90◦

range of motion. Using a specially developed controller, these additional unactuated degrees
of freedom are shown to enable the vehicle to perform a number of tasks that a conventional
quadcopter cannot perform. This ability of the vehicle to change shape is shown to enable
the traversal of narrow passages, simple grasping, and perching. A video demonstrating an
experimental vehicle performing each of these abilities can be found at https://youtu.be/
xEg8GXlb82g.

Chapter 5: Computationally Efficient Trajectory Generation in Known En-
vironments. In the remainder of the dissertation, computationally efficient trajectory gen-
eration methods are presented which enable low-power computers to be used to perform
obstacle avoidance. In this chapter a computationally efficient method for checking whether
a given quadcopter trajectory (modeled as a fifth order polynomial in time) collides with
a convex obstacle. Due to the efficiency of the proposed collision checking method, many
candidate trajectories can be generated and evaluated for collisions with the environment in
a very short period of time, allowing for new trajectories to be generated in real-time. A
video demonstrating this method can be found at https://youtu.be/cpskvQPhpoY.

Chapter 6: Computationally Efficient Trajectory Generation in Unknown
Environments. Next, a similar method to that presented in Chapter 6 is presented which
is capable of quickly finding a collision-free trajectory given a single depth image taken
by an onboard camera. The proposed method relies upon on an efficient representation
of the free space of the depth image, namely rectangular pyramids. These pyramids allow
for efficient trajectory collision checking to be performed, allowing for a quadcopter to fly
autonomously through a previously unseen cluttered environment while replanning at high
rates using a low-power onboard computer. A video demonstrating the method can be found
at https://youtu.be/Pp-HIT9S6ao.

Chapter 7: Conclusions. Finally, the overarching findings of this dissertation are
summarized.

https://youtu.be/C2fj2D_2pI8
https://youtu.be/xEg8GXlb82g
https://youtu.be/xEg8GXlb82g
https://youtu.be/cpskvQPhpoY
https://youtu.be/Pp-HIT9S6ao

6

Chapter 2

Quadcopter Dynamics and Control

In this section a derivation of the nonlinear dynamics of a quadcopter and a standard quad-
copter controller are presented. A rigid body model is used in deriving the dynamics, and it
is assumed that the only forces and torques acting on the vehicle are those due to gravity and
the thrusts and torques produced by each propeller. This dynamics model is used as a basis
for comparison to the proposed vehicle designs presented in Chapters 3 and 4, and is used to
motivate the trajectory generation algorithms presented in Chapters 5 and 6. The controller
presented in this chapter is a commonly used method for controlling quadcopters, and is
used as a basis for developing the modified quadcopter controllers presented in Chapters 3
and 4.

2.1 Notation

Non-bold symbols such as m represent scalars, lowercase bold symbols such as g represent
first order tensors (vectors), and uppercase bold symbols such as J represent second order
tensors (matrices). Subscripts such as mB represent the body to which the symbol refers,
and superscripts such as gE represent the frame in which the tensor is expressed. A second
subscript or superscript such as ωBE or RBE represents what the quantity is defined with
respect to. The symbol d represents a displacement, ω represents an angular velocity, and
R represents a rotation matrix. The skew-symmetric matrix form of the cross product is
written as S(a) such that S(a) b = a× b.

We define x, y, and z to be unit vectors such that e.g. xB, yB, and zB are unit vectors
that point in the x, y, and z directions of frame B respectively.

2.2 Model

Let E be the inertial frame, and B be a frame fixed to the body of the quadcopter as shown
in Figure 2.1. The rotation matrix of frame B with respect to frame E is defined as RBE

CHAPTER 2. QUADCOPTER DYNAMICS AND CONTROL 7

Figure 2.1: Model of a conventional quadcopter. Each propeller produces force fpi and
torque τpi at point Pi. The center of mass of the vehicle is equidistant from each propeller
at point C, and the distance between adjacent propellers is l.

such that the quantity vB expressed in the B frame is equal to RBEvE where vE is the same
quantity expressed in frame E.

When used in a subscript of a displacement tensor or its time derivatives, E is defined as
a fixed point in the inertial frame and B is defined as the center of mass of the vehicle. For
example, dEBE represents the displacement of the center of mass of the vehicle with respect
to a fixed point in the inertial frame, and is expressed in the inertial frame E.

The mass and mass moment of inertia of the vehicle taken at the center of mass of the
vehicle are denoted mB and JB respectively. Additionally, the vehicle has four propellers
labeled i ∈ {1, 2, 3, 4}, each of which produces a scalar thrust force fpi and aerodynamic
reaction torque τpi in the zB direction. We assume that the torque produced by each propeller
is piecewise linearly related to the propeller thrust force [14] with positive proportionality
constants κ+and κ−such that:

τpi =

{
(−1)iκ+fpi fpi ≥ 0
(−1)iκ−fpi fpi < 0

(2.1)

where (−1)i models the handedness of the propellers, fpi < 0 when the propellers are spun in
reverse, and κ+ 6= κ− when asymmetric propellers are used, as is common with quadcopters.
Note that for conventional quadcopters fpi is typically constrained to be positive due to
hardware limitations, though in special cases (such as the vehicle described in Chapter 4)
negative thrust forces are allowed. Finally, let Pi be a point along the thrust axis of propeller
i such that dPiB

describes the displacement of a fixed point along thrust axis of propeller i
with respect to the center of mass of the vehicle.

CHAPTER 2. QUADCOPTER DYNAMICS AND CONTROL 8

2.3 Dynamics

The translational and rotational dynamics of the vehicle are derived using Newton’s second
law and Euler’s law respectively [15]. The time derivative of a vector is taken in the reference
frame in which that vector is expressed. Let g be the acceleration due to gravity.

The translational dynamics of the vehicle (written in the inertial frame E) are then

mBd̈
E
BE = mBg

E +REB

4∑
i=1

zBBfpi (2.2)

and the rotational dynamics (written in the body-fixed frame B) are then

JBB ω̇
B
BE + S

(
ωBBE

)
JBBω

B
BE =

4∑
i=1

(
S
(
dBPiB

)
zBBfpi + zBBτpi

)
(2.3)

Individual thrust force computation

In order to simplify the controller synthesis presented in the following subsection, we next
rewrite (2.2) and (2.3) to be functions of the intermediate control inputs fΣ and τB. The
individual propeller thrust forces u = (fp1 , fp2 , fp3 , fp4) are related to the desired total thrust
in the zB direction fΣ and the desired torques about the axes of the body-fixed B frame,
τB = (τx, τy, τz) as follows: [

fΣ

τB

]
=

[
MfΣ

MτB

]
u = Mu (2.4)

where MfΣ
∈ R1×4 is the mapping from u to fΣ, MτB ∈ R3×4 is the mapping from u to τB,

and M ∈ R4×4 is the combined mapping.
The mapping M is computed using the geometry of the vehicle and the torque produced

by each propeller as a function of the thrust it produces. Let dPiB
be the position of propeller

Pi relative to the center of mass of the entire vehicle B, and κpi = (−1)iκ+ or κpi = (−1)iκ−

depending on the thrust direction of propeller i as defined in (2.1). Then, the i-th columns
of MfΣ

and MτB are

MfΣ
[i] = 1, MτB [i] = S

(
dBPiB

)
zBB + κpiz

B
B (2.5)

where we recall that each propeller produces thrust in the zBB direction.
For a conventional quadcopter with l defined as shown in Figure 2.1, this mapping is

defined as Mu:

Mu =


1 1 1 1
−l/2 −l/2 l/2 l/2
−l/2 l/2 l/2 −l/2
−κ+ κ+ −κ+ κ+

 (2.6)

CHAPTER 2. QUADCOPTER DYNAMICS AND CONTROL 9

Figure 2.2: Cascaded controller used to control the vehicle.

where we note that |κpi | = κ+ for all propellers, as the propellers of a conventional quadcopter
are typically restricted to only spin in one direction.

By employing this mapping, the dynamics of the vehicle can be rewritten such that
the only control inputs affecting the translational and rotational dynamics are fΣ and τB

respectively:
mBd̈

E
BE = mBg

E +REBzBBfΣ (2.7)

JBB ω̇
B
BE + S

(
ωBBE

)
JBBω

B
BE = τB (2.8)

2.4 Control

A cascaded control structure, shown in Figure 2.2, is used to control the vehicles presented
in this dissertation (any exceptions in the following chapters are clearly noted). A position
controller first computes a desired acceleration based on position and velocity errors, allowing
for the computation of the desired total thrust in the zB direction, fΣ. Then, an attitude
controller computes the desired torque required to align the thrust direction zB with the
desired acceleration direction and achieve the desired yaw angle. Finally, the individual
propeller thrust forces necessary to generate the desired total thrust and desired body torque
are computed. For each propeller, the desired thrust is converted to a desired angular
velocity, which an electronic speed controller is used to track.

Position control

Let dEBBd
represent the difference between the desired and current position, ḋEBBd

represent

the difference between the desired and current velocity, and d̈EBBd
represent the desired

CHAPTER 2. QUADCOPTER DYNAMICS AND CONTROL 10

acceleration of the vehicle. The linear system ṡp = Apsp +Bpup is then defined as follows

sp = (dEBBd
, ḋEBBd

), up = d̈EBBd
(2.9)

Ap =

[
0 I
0 0

]
, Bp =

[
0
I

]
(2.10)

An infinite-horizon LQR controller [16] is used to compute the desired acceleration d̈EBBd

using this linear system. The desired thrust fΣ and thrust direction are then computed from
the desired acceleration as follows.

fΣ = mB||d̈EBBd
− gE||2, zEBd

=
d̈EBBd

− gE

||d̈EBBd
− gE||2

(2.11)

Using the the desired acceleration direction zEBd
and a desired yaw angle, the desired

attitude of the vehicle is defined as the attitude at which zB becomes aligned with zEBd
and

the desired yaw angle is achieved.

Attitude control

The attitude controller is designed using desired first-order behavior, described here by the
rotation vector r = (φe, θe, ψe) that represents the rotation between the current and desired
attitude (i.e. a rotation about the axis defined in the direction of r by angle ||r||). Note that,
to first order, φe, θe, and ψe represent roll, pitch, and yaw respectively. The desired attitude
is defined as that attitude at which the yaw angle of the vehicle matches the desired yaw
angle and at which the thrust direction of the vehicle matches the desired thrust direction,
which is given by the position controller (see Figure 2.2).

The linearized attitude dynamics of the vehicle are then[
ṙ
r̈

]
= A

[
r
ṙ

]
+BτB (2.12)

where

A =

[
0 I
0 0

]
, B =

[
0(

JBB
)−1

]
(2.13)

and where we recall that JBB is the moment of inertia of the entire vehicle written at its
center of mass.

A second infinite-horizon LQR controller with state cost matrix Q ∈ R6×6 and input
cost matrix RτB ∈ R3×3 is used to minimize the attitude error. For each configuration of
the vehicle, we weight the cost of each state error independently such that Q is a diagonal
matrix. The values of the diagonal of Q are chosen such that the costs associated with φe
and θe (i.e. elements 1 and 2) are equal and such that the costs associated with the roll rate
and pitch rate (i.e. elements 4 and 5) are equal. However, we choose to define the input

CHAPTER 2. QUADCOPTER DYNAMICS AND CONTROL 11

cost matrix RτB using the mapping MτB from the individual thrust forces u to the desired
torque τB as defined in (2.4) (i.e. the lower three rows of Mu).

RτB = (M+
τB)TRuM

+
τB (2.14)

where M+
τB is the pseudoinverse of the mapping matrix MτB , and Ru ∈ R4×4 is a diagonal

matrix that encodes the cost associated with the thrust force produced by each propeller. For
a conventional quadcopter, Ru is typically chosen to be a diagonal matrix with equal costs
along the diagonal as each propeller typically has nearly identical aerodynamic properties.

By defining the input cost matrix RτB as a function of the mapping matrix MτB , we
can straightforwardly synthesize different infinite-horizon LQR attitude controllers for e.g.
vehicles of different sizes. Furthermore, the torque cost matrix RτB can be used to analyze
the ability of the vehicle to control its attitude in different configurations, as it describes
the cost of producing an arbitrary torque on the vehicle while implicitly accounting for the
geometry of the vehicle due to its dependence on MτB .

12

Chapter 3

Enhanced Disturbance Rejection via
Angular Momentum

In this chapter we present a novel quadcopter design that utilizes a momentum wheel to
reduce the sensitivity of the vehicle to torque disturbances. As described in Chapter 1, the
proposed vehicle is designed to require minimum modifications to the design of a conventional
quadcopter such that new capabilities can be realized (i.e. improved torque disturbance
rejection). The mechanical design, coupled with intelligent feedback control, allows for
operation of autonomous aerial systems in challenging environments where conventional
designs may fail. We show that sensitivity to torque disturbances monotonically decreases
with increasing angular momentum, and the effect scales such that a greater improvement in
torque disturbance sensitivity is experienced by smaller vehicles. For a fixed vehicle size, a
trade-off exists between the added torque disturbance rejection capability, the power required
to carry the wheel’s added mass, and the kinetic energy of the rotating wheel. A cascaded
controller structure is proposed that accounts for the additional angular momentum and
that accelerates or decelerates the momentum wheel to gain additional control authority in
yaw. Theoretical results are validated experimentally using two vehicles of different scales.
The proposed vehicle design is likely to be of value in situations where precision control is
required in the face of large disturbances.

Note that the material presented in this chapter is based on the following previously
published work. This chapter is primarily based upon the latter paper (which is an extension
of the former), and differs primarily in the notation used to describe the dynamics of the
vehicle.

• Nathan Bucki and Mark W Mueller. “Improved Quadcopter Disturbance Rejection
Using Added Angular Momentum”. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). IEEE. 2018

• Nathan Bucki and Mark W Mueller. “A novel multicopter with improved torque
disturbance rejection through added angular momentum”. In: International Journal
of Intelligent Robotics and Applications 3.2 (2019), pp. 131–143

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 13

Figure 3.1: Quadcopters of different sizes with added momentum wheels. Each momentum
wheel is driven by a dedicated motor and spins about the thrust direction of the vehicle.

3.1 Introduction

As discussed in Chapter 1, multicopters are used to perform a variety of tasks such as aerial
imaging, environmental monitoring, building inspection, and search and rescue. However,
in challenging conditions multicopters may be unable to perform adequately, due to (e.g.)
the danger posed by poor tracking performance. For example, multicopters may struggle in
high wind shear environments, or environments with flying debris (e.g. hail storms).

Several controllers have been developed that improve the disturbance rejection capabili-
ties of multicopters. A method for estimating and compensating for wind disturbances acting
on quadcopters was presented by [19], and a sliding mode controller used in conjunction with
a sliding mode disturbance observer was presented by [20] in order to improve robustness to
unknown disturbances. [21] use a nonlinear adaptive state feedback controller to track trajec-
tories in the presence of constant force disturbances, and [22] develop an attitude controller
and disturbance observer to compensate for time varying disturbances.

Although existing disturbance-observer-based controllers improve the disturbance rejec-
tion capabilities of the system, the performance of these controllers is inherently limited by
the system dynamics, sensor noise, and by the available range of control inputs. To improve
disturbance rejection beyond what is possible by changing the controller, it is necessary to
adapt the system’s design. One such change is to increase the angular momentum in the
thrust direction of the multicopter by attaching a momentum wheel that spins about the
thrust axis of the multicopter (e.g. a momentum wheel as shown in Figure 3.1). The addi-
tional angular momentum aids in the rejection of torque disturbances, enhancing the ability
of the vehicle to fly in environments with torque disturbances.

The idea of using angular momentum to improve attitude control was first rigorously
studied in the context of dual-spin spacecraft, which are vehicles that consist of two bodies
rotating about a shared spin axis in order to maintain a desired attitude. Attitude stability
criteria for dual-spin spacecraft is presented in [23], and the effects of energy dissipation on
dual-spin spacecraft is presented in [24]. However, the above consider the stabilizing effect of

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 14

angular momentum on the orientation of spacecraft and do not focus on the effect of angular
momentum on the translational dynamics of the vehicle.

Unlike a satellite in free-fall, the translation and orientation of a multicopter are strongly
coupled, and thus the effect of angular momentum on the translational dynamics of mul-
ticopters must be considered in order to perform stable flight. Several multicopter-based
vehicles have been proposed that exhibit stable flight with a significant amount of angu-
lar momentum. In [25], stability criteria are developed for a class of vehicles with a single
propeller and passive stabilizing mechanisms, and the contribution of the vehicle’s angular
momentum to its stability is discussed. A method for controlling a quadcopter despite the
loss of one, two, or three of its propellers is presented in [26] that involves the vehicle gaining
significant angular momentum in order to hover, and this idea has been further investigated
in [27], which presents an aerial vehicle that rotates parallel to the direction of gravity using
only a single propeller. Furthermore, in [28] a novel aerial vehicle design is presented that
uses one large propeller and three smaller propellers to enable more energy efficient flight
compared to similar sized quadcopters. Due to the relative size and rotation directions of
the propellers, the vehicle has a nonzero net angular momentum.

In this chapter we focus on how a large source of angular momentum can be used to
enhance the torque disturbance rejection capabilities of a multicopter rather than treating
any angular momentum as an unfortunate secondary effect of the vehicle design. In addition
to these considerations, we emphasize the fact that for our proposed vehicle the effect of the
momentum wheel can be changed mid-flight by changing the speed at which the wheel spins.
Mid-flight changes to the dynamics of multicopters have also been explored, for example, in
[29] and [30]. In [29] a quadcopter with tilting propellers is presented that is able to change
the thrust direction of the vehicle without changing its attitude, and in [30] a quadcopter
capable of changing the length and orientation of its arms is presented. Although these
vehicles are not specifically designed to improve the disturbance rejection capabilities of
a multicopter, they allow the vehicle to perform maneuvers that a standard multicopter
cannot.

Regarding the proposed novel vehicle, we present the following in this chapter:

• an analysis of the disturbance rejection capabilities of the vehicle that includes position
and velocity,

• a comparison between the force and torque disturbance rejection capabilities of the
system,

• an analysis of how disturbance rejection scales with vehicle size,

• an analysis of the robustness of the control law to errors in the estimate of the total
angular momentum of the vehicle,

• a new control law that leverages the source of angular momentum to improve the yaw
control authority of the vehicle,

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 15

Figure 3.2: Model of a quadcopter with an added momentum wheel. The vehicle is nearly
identical to a conventional quadcopter (described in Chapter 2), but has a momentum wheel
that rotates about the zB axis with angular velocity ωW .

• additional experiments with a small scale quadcopter that verify how the disturbance
rejection capabilities scale with vehicle size

3.2 Dynamics

The dynamics of the vehicle largely match the dynamics of a conventional quadcopter (pre-
sented in Chapter 2), but include additional terms related to the momentum wheel. Fig-
ure 3.2 shows a model of the proposed vehicle including the momentum wheel.

The momentum wheel is assumed to rotate about its center of mass, and the bodies are
assumed rigid except for their relative rotation. Because the momentum wheel does not
produce any external force on the vehicle while spinning, the translational dynamics of the
vehicle are unchanged from those of a conventional quadcopter. That is, the translational
dynamics of the proposed vehicle are identical to those presented in (2.2):

mBd̈
E
BE = mBg

E +REB

4∑
i=1

zBBfpi (3.1)

where mB is the mass of the entire vehicle including the momentum wheel.
The total mass moment of inertia of the vehicle (including the momentum wheel) is

denoted JBB , and the mass and mass moment of inertia of only the momentum wheel are
denoted mW and JBW . We assume that the momentum wheel rotates about the vehicle-fixed
thrust axis zB, and is symmetric about this axis of rotation, so that JBW is constant when
expressed in the vehicle-fixed frame. The attitude dynamics may then be derived using
Euler’s law for clustered bodies with a fixed center of mass [15].

The vehicle rotates with respect to the earth at angular velocity ωBBE, written in the
vehicle-fixed frame, and the wheel rotates with respect to the body at a speed ωW so that

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 16

ωBWB = xBBωW . The vehicle uses its propellers to produce an external torque τB, and an
internal torque is produced by the motor driving the momentum wheel, which acts between
the wheel and the body and is parallel to zB. Taking derivatives with respect to the vehicle-
fixed frame, and manipulating, gives:

JBB ω̇
B
BE + JBW ω̇

B
WB =

− S
(
ωBBE

) (
JBBω

B
BE + JBWω

B
WB

)
+ τB

(3.2)

Note that this neglects any effect due to the angular momentum of the propellers: Typical
multicopters have an even number of propellers, identical up to a mirror symmetry, that
rotate with alternating handedness, thus having near zero net angular momentum on average
and having a negligible effect on the system dynamics. Moreover, the mass moment of inertia
of the propellers is likely to be negligible compared to that of the body and momentum wheel.
An example application where the propellers’ angular momentum was considered significant
is given in [31].

Compared to a traditional multicopter, the translational dynamics (3.1) are unchanged by
the addition of the momentum wheel. However, the attitude dynamics include two additional
terms: the coupling effect of the momentum wheel’s angular momentum S

(
ωBBE

)
JBWω

B
WB,

and the acceleration/deceleration of the momentum wheel relative to the vehicle-fixed frame
JBW ω̇

B
WB. Notably, the wheel coupling term is linear in the vehicle’s angular velocity ωBBE, so

that it has a much larger effect near hover than the other cross-coupling term S
(
ωBBE

)
JBBω

B
BE

(which is quadratic with respect to ωBBE). The acceleration term ω̇BWB serves as additional
control input to the system, and is actuated by the torque τW produced by the motor driving
the momentum wheel. Note that because we neglect aerodynamic effects, the location of
the momentum wheel in the zB direction affects only the location of the center of mass and
the total mass moment of inertia of the vehicle, and thus does not appear explicitly in the
vehicle dynamics. The location of the center of mass relative to large aerodynamic surfaces
may also affect a vehicle’s stability, as is discussed in, e.g., [32].

Linearized dynamics

Here we present the linearized system dynamics as background for the system analysis in
the following section. When linearizing the system we assume that xB, yB, and zB are the
principal axes of inertia of both the vehicle and the momentum wheel. For simplicity of
expression, we make the assumption that the vehicle has a 90◦ symmetry about its thrust
axis, so that the moments of inertia about xB and yB are identical, and that the momentum
wheel is symmetric about its axis of rotation. The principal mass moments of inertia about
xB and zB are then denoted JBB,xx and JBB,zz respectively for the vehicle and JBW,xx, and JBW,zz
for the momentum wheel.

The position of the vehicle relative to a fixed point in the inertial frame is written as
dEBE = (x, y, z), and the velocity is written as ḋEBE = (ẋ, ẏ, ż). The attitude of the vehicle
relative to the inertial frame is written as roll, pitch, and yaw (notated φ, θ, ψ), and the

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 17

angular velocity of the vehicle is written as ωBBE = (p, q, r) where p, q and r are the body
rates of the vehicle about the xB, yB, and zB axes respectively. The dynamics are linearized
about a desired angular velocity of the momentum wheel ω̄W such that ∆ωW = ωW − ω̄W is
the deviation of the angular velocity of the rotating body from the desired value.

The control inputs to the system are the deviation from the total thrust required to hover
∆fΣ = fΣ −mB||g||, torques produced by the propellers τB = (τx, τy, τz), and the internal
torque produced by the motor driving the momentum wheel τW . The linearization of (3.1)
and (3.2) yields three decoupled subsystems with the following state and input vectors, where
ṡxy = Axysxy +Bxyuxy, ṡz = Azsz +Bzuz, and ṡψ = Aψsψ +Bψuψ, and

sxy = (x, y, ẋ, ẏ, φ, θ, p, q) uxy = (τx, τy) (3.3)

sz = (z, ż) uz = ∆fΣ (3.4)

sψ = (ψ, r,∆ωW) uψ = (τz, τW) (3.5)

The system matrices for these three linear subsystems are then

Axy =


0 I 0 0
0 0 A1 0
0 0 0 I
0 0 0 A2

 Bxy =


0
0
0(

JBB,xx
)−1

I2×2

 (3.6)

Az =

[
0 1
0 0

]
Bz =

[
0

m−1
B

]
(3.7)

Aψ =

0 1 0
0 0 0
0 0 0

 Bψ =

 0 0(
JBB,zz

)−1 −
(
JBW,zz

)−1

0
(
JBW,zz

)−1

 (3.8)

where

A1 = ||g||
[

0 1
−1 0

]
, A2 =

JBW,zz
JBB,xx

ω̄W

[
0 −1
1 0

]
(3.9)

The linearized dynamics of the proposed system differ from the linearized dynamics of
a normal multicopter due to the cross-coupling effect of matrix A2, the additional state re-
lated to the wheel speed ∆ωW , and the additional control input τW . When the nominal
angular velocity of the momentum wheel ω̄W is zero, Axy further decouples into a subsys-
tem containing states (x, ẋ, θ, q) and a subsystem containing (y, ẏ, φ, p). However, as ω̄W
increases in magnitude, the roll and pitch states becoming increasingly coupled, introducing
an oscillatory mode into the dynamics that results in gyroscopic precession of the vehicle
when external roll and pitch torques are applied. We show in the following section how this
coupling improves the torque disturbance rejection capabilities of the vehicle as ω̄W increases
when the additional angular momentum of the wheel is taken into account in the controller
of the vehicle.

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 18

The additional control input τW is significant because it improves the yaw control author-
ity of the vehicle. However its use causes deviation from the desired wheel speed, creating a
trade-off between the improvement of the yaw control of the vehicle and the change in the
magnitude of the coupling terms in A2.

3.3 System Analysis and Design

In this section we first analyze how the sensitivity of the vehicle’s horizontal motion to
disturbances changes with respect to the scale of the vehicle and speed of the wheel. We
also examine the trade-off in the wheel design, comparing the power required to carry the
wheel, the rotational energy that must be stored in the wheel, and the size of the wheel.

Scaling analysis

We compare the sensitivity of a system to external disturbances as the system size is varied,
and reason about how all parameters scale as a function of the vehicle’s size. Through this,
we argue that smaller vehicles are likely to see a lower sensitivity to torque disturbances
through the addition of a momentum wheel.

Noting that the system dynamics, to first order, decouple into horizontal, vertical, and
yaw subsystems, we restrict our analysis to the horizontal subsystem where the momentum
wheel affects the system dynamics. The scale of the vehicle is captured by a linear scaling
factor λ, so that all lengths of the vehicle scale proportionally to λ.

Scaling of dynamics

Considering the linearized horizontal dynamics of (3.6), we note that the dynamics matrix

Axy is a function of the vehicle parameters only through the term
JB
W,zz

JB
B,xx

ω̄W , while the input

matrix Bxy contains only the inertia
(
JBB,xx

)−1
.

Assuming materials of constant density are used, the mass of the vehicle will scale pro-
portional to its volume, or ∼ λ3, and the mass moment of inertia of the vehicle as λ5 (being
composed of mass multiplied by distance squared). We assume that the added momentum
wheel scales in the same manner as the rest of the vehicle’s mass moment of inertia, so that
the ratio JBW,zz/J

B
B,xx is independent of λ.

The final parameter in the dynamics is the speed of the wheel, ω̄W , which is here assumed
to scale proportionally to the speed of the propellers. This assumption is motivated by the
fact that the momentum wheel is likely to be powered by a motor similar to that powering
the propellers, and that the energy stored in the momentum wheel during operation then
scales proportionally to the energy stored in the propellers (so that the momentum wheel
never represents a disproportionate amount of energy in the system). Inspired by [33] we
apply Mach scaling to the propellers, assuming that the propeller tip speed remains constant
at different scales, so that ω̄W ∼ λ−1.

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 19

Scaling of controller parameters

We reason about the system’s performance when rejecting disturbances by computing the
system’s closed-loop sensitivity to both torque and force disturbances when applying the H2

optimal controller [34]. The controller is parametrized through the costs applied to the error
signal zxy ∈ R4 defined as:

zxy = c(λ)

[
I2×2 02×6

02×2 02×6

]
sxy + d(λ)

[
02×2

I2×2

]
uxy (3.10)

where c(λ) is the cost of position errors, and d(λ) is the cost of applying inputs. Under the
assumption that position errors are best measured in body-lengths, the cost factor will scale
as c(λ) ∼ λ−1.

The cost applied to the input is assumed to scale inversely proportionally to the maximum
torque that the vehicle can apply, which will scale as the maximum force multiplied by the
linear scale. We assume that the maximum force scales as the vehicle’s mass, so that the
maximum torque scales as λ4 and thus the cost as d(λ) ∼ λ−4.

Sensitivity to scaling

Under the preceding assumptions, the effect of adding a momentum wheel for disturbance
rejection can be compared for vehicles of different sizes. We consider the effect of force as
well as torque disturbances on the vehicle, but consider these effects separately: The relative
magnitude of these disturbances will depend on the nature of the disturbances, the vehicle
geometry, and other factors that are difficult to capture in a straight-forward scaling law.
Torque disturbances enter as added to the torque inputs, and force disturbances act directly
on the vehicle velocity state. As we will normalize performance at each scale, the dependence
of these disturbances on vehicle scale is immaterial.

Specifically, we consider a vehicle of nominal parameters corresponding to the larger
quadcopter shown in Figure 3.1, where for λ = 1 we have mB = 922 g, JBW,zz/J

B
B,xx = 0.11,

ω̄W (λ) = 468λ−1rad s−1, and we use the costs c(λ) = λ−1m−1, and d(λ) = λ−4N−1 m−1.
Though these costs are chosen to illustrate the effect of scaling, the resulting feedback gain
matrix is similar to that which is used in the experimental evaluation of Section 6.5, thus
yielding meaningful insights.

The sensitivity to torque and force disturbances as a function of the momentum wheel
speed at three different vehicle scales is shown in Figure 3.3. The figure compares the nominal
vehicle to vehicles that are of the scale λ ∈

{
1
2
, 1, 2

}
, i.e. with masses ranging from 115g to

7.4kg. The sensitivity to disturbances is defined as the normalized state feedback H2 norm
of the system, which can be interpreted as the signal energy of zxy (defined in (3.10)) after
Dirac impulse disturbances occur, written as

||zxy||2 =

(∫ ∞
0

zxy(t)
T zxy(t)dt

)1/2

(3.11)

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 20

Notable is that, for all scales, the vehicle’s sensitivity to torque decreases monotoni-
cally with increasing momentum wheel speed. The sensitivity to force disturbances initially
decreases weakly with increasing angular momentum, before increasing, so that vehicles
with large added angular momentum may be more sensitive to force disturbances. Thus, a
substantial decrease in sensitivity to torque disturbances may be achieved without a great
change to sensitivity to force disturbances, and the exact trade-off will depend on the relative
magnitudes of force disturbances and torque disturbances.

The smaller scale vehicle, moreover, is capable of storing more angular momentum in
the wheel relative to the vehicle inertia, and thus has a lower overall sensitivity to torque
disturbances at the expense of a higher sensitivity to force disturbances when compared to
larger scale vehicles. Note, however, that such a comparison between vehicle scales relies on
strong assumptions about how the dynamics and control parameters scale as described in
the previous subsections.

An optimal choice for the trade-off between sensitivity to force and torque disturbances
will require additional information about the nature of the expected disturbances, which
are likely application-specific. Any practical design must also weigh the potential increase
in system robustness to the additional cost of carrying the added mass of the momentum
wheel. This is touched upon next.

Momentum wheel design

For a fixed sized vehicle, we now investigate the design of the momentum wheel itself.
Specifically, a designer must choose a wheel size, mass, and angular velocity; these will be
shown to relate to the vehicle’s efficiency, safety, and disturbance sensitivity.

The benefit to the dynamics follows from the angular momentum of the wheel, JBW,zzωW ,
so that the effect is increased with increasing momentum. Increasing the wheel mass in-
creases its mass moment of inertia, but this requires additional power to be carried. The
increase in power consumption at hover due to the added weight can be estimated through
momentum theory, which holds that the total mechanical power produced by the propellers
PΣ is related to the mass of the vehicle as PΣ = µm

3/2
B , where µ is an experimentally measured

constant that depends on the propeller geometry [35]. The maximum moment of inertia for
a given mass is provided by a thin ring, whose outer radius will typically be constrained by
mechanical considerations of the vehicle (e.g. so that the wheel does not protrude beyond
the vehicle arms). For maximum efficiency, thus, a wheel of low mass but large radius is
desired.

The momentum may also be increased by increasing the wheel’s speed, but the added
kinetic energy may represent a substantial safety concern e.g. in the event of a crash. For
a fixed angular momentum and wheel size, the kinetic energy stored in the rotating wheel
1
2
JBW,zzω

2
W increases inversely proportionally to the mass of the wheel. If, instead, the wheel

mass and angular momentum are fixed, but its radius and speed are allowed to vary, the
energy stored scales inversely proportionally to the radius squared. A practical design must

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 21

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
o
rm

a
li
ze

d
to

rq
u
e

se
n
si

ti
v
it

y

λ=0.5

λ=1

λ=2

0 200 400 600 800 1000

Wheel speed [rad/s]

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

N
o
rm

a
li
ze

d
fo

rc
e

se
n
si

ti
v
it

y

Figure 3.3: Normalized ability to reject disturbances at three different vehicle scales λ.
Sensitivities are computed under the assumptions of Sect. 3.3. As the scale of the vehicle
decreases, the normalized torque disturbance sensitivity of the vehicle decreases and the
normalized force sensitivity of the vehicle increases.

trade off the additional power required to lift the wheel, the energy stored in the wheel, the
radius of the wheel, and the vehicle’s disturbance sensitivity.

3.4 Control

A controller similar to the cascaded controller used for a conventional quadcopter as described
in Section 2.4 is used to control the vehicle. Unlike a controller that relies on linearizing the
full dynamics of the system at hover, the proposed cascaded controller is straightforwardly
able to cope with large changes of the vehicle’s attitude. Although the proposed cascaded
controller has a slightly larger H2 cost than a näıve application of the full-state linearized
controller, it is shown to have much improved robustness to error in the estimated momentum
wheel speed.

For the controller, an outer (position) controller computes a desired total thrust fΣ and

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 22

thrust direction to track position reference commands, and an inner (attitude) controller
tracks this desired thrust direction and a yaw command by commanding desired torques
τB and a desired internal torque on the wheel τW . The total force and torques are then
converted to individual motor speed commands. Note that because the linear dynamics of
the proposed vehicle are identical to those of a conventional quadcopter, the same position
controller is used as was presented in Section ??.

We proceed by defining a state feedback H2 optimal attitude controllers based on the
linearized dynamics derived in Section 3.2. An analytic expression for the state feedback
H2 optimal attitude controller based on the estimated speed of the momentum wheel is
given, allowing for the H2 optimal attitude controller to be computed on-the-fly at low
computational cost during quasi-static wheel speed changes.

Attitude control

For the inner (attitude) controller, we propose to apply a nonlinear controller based on
[36]. The controller gains are chosen by the desired first-order behavior, described here in
terms of the Euler angles that define the rotation from the desired attitude to the current
attitude (φe, θe, ψe). The desired attitude is defined as that attitude at which the yaw angle
of the vehicle matches the desired yaw angle and at which the thrust direction of the vehicle
matches the desired thrust direction zEBd

. The angular velocity error ωBe = (pe, qe, re) is
defined as the difference between the desired and true angular velocity of the vehicle. Recall
that ∆ωW = ωW−ω̄W represents the difference between the true and desired angular velocity
of the momentum wheel.

As derived in Section 3.2, the rotational dynamics decouple into two independent sub-
systems: one related to the roll and pitch of the vehicle, and another related to the yaw and
angular velocity of the momentum wheel. The states relating to the roll and pitch of the
vehicle are a subset of the states sxy as given in (3.3) and (3.6), and form the rotational sub-
system ṡφ,θ = Aφ,θsφ,θ + Bφ,θuφ,θ. The states are sφ,θ = (φe, θe, pe, qe), inputs uφ,θ = (τx, τy),
and system matrices defined as follows, where A2 is given in (3.9):

Aφ,θ =

[
0 I
0 A2

]
, Bφ,θ =

[
0(

JBB,xx
)−1

I2×2

]
(3.12)

Due to vehicle symmetry, the state costs are chosen such that roll and pitch are penalized
equally, as are the input torques about xB and yB. We choose not to explicitly penalize the
angular velocity, and thus have the output error zφ,θ = Cφ,θsφ,θ +Dφ,θuφ,θ, where

Cφ,θ = cφ,θ diag (1, 1, 0, 0) (3.13)

Dφ,θ = dφ,θdiag (0, 0, 1, 1) (3.14)

The state feedback H2 optimal controller uφ,θ = −Kφ,θsφ,θ is defined by Kφ,θ =
(DT

φ,θDφ,θ)
−1BT

φ,θP , where P is the solution to the relevant continuous time algebraic Riccati

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 23

equation [16]. The solution for Kφ,θ can be tediously computed by solving the Riccati equa-
tion symbolically in terms of the system parameters (e.g. the mass moments of inertia of the
system) and the cost weights. Solving for Kφ,θ in this way allows for the state feedback H2

optimal attitude controller to be computed on-the-fly for any given momentum wheel speed,
system parameters, and state and input costs. Note that this is applicable only if the wheel
speed changes quasi-statically: otherwise, a time-varying controller may be required at the
expense of increased computational cost.

Kφ,θ =

[
α β γ 0
−β α 0 γ

]
(3.15)

where

L = JBW,zzω̄W , H =
cφ,θ
dφ,θ

√
16
(
JBB,xx

)2
+ L4 − L2 (3.16)

α =
H

4JBB,xx
, β =

L
√

2H

4JBB,xx
, γ =

√
2H

2
(3.17)

The controller for the yaw subsystem sψ given by (3.5) and (3.8) is computed using on
the state and input cost matrices Cψ and Dψ. As this subsystem is not affected by the wheel
speed ω̄W , the gain matrix Kψ may be computed offline.

After the desired total thrust fΣ and input torques τB = (τx, τy, τz) have been computed,
the propeller thrusts (and thus speeds) required to achieve these forces and torques are
computed. This mapping is dependent on the structure of the multicopter and will change
depending on the number and position of propellers. For example, the desired individual
propeller thrusts for a quadcopter are computed by inverting (2.6).

Sensitivity to estimated wheel speed error

Errors between the estimated wheel speed and true wheel speed can result in a greater
sensitivity of the system to disturbances or even outright instability. Figure 3.4 shows how
the torque disturbance sensitivity of the system defined by (3.3) and (3.6) changes as a
function of the difference between the estimated wheel speed and a true wheel speed of
ωW = 468 rad s−1 using the parameters of the larger vehicle shown in Figure 3.1. The H2

cost is normalized by the sensitivity of the system with ωW = 0, and is evaluated for both the
H2 optimal state feedback controller considered in Section 3.3 and the cascaded controller
presented in this section.

The näıve full-state H2 optimal controller results, of course, in the lowest system sensi-
tivity to torque disturbances. However, this controller shows extreme sensitivity to errors
in the belief of the estimated wheel speed, and the closed-loop system becomes unstable
even for a very small over-estimation of the wheel speed. The cascaded controller, on the
other hand, does not show this sensitivity to estimation errors, but has a greater closed-loop
sensitivity to the disturbances, although it should be noted that this is not necessarily due

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 24

-50.0% 0.0% 50.0% 100.0%

Estimated Wheel Speed Error

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
li
ze

d
H

2
N

o
rm

H2 feedback

Cascaded

Figure 3.4: Sensitivity of the vehicle to roll/pitch torques as a function of the error of the
estimated wheel speed for the large quadcopter with a true wheel speed of ωW = 468 rad s−1.
TheH2 cost is normalized such that any value less than 1 indicates the vehicle is less sensitive
to roll/pitch torque disturbances than a vehicle with ωW = 0.

to the cascaded nature of the controller. In fact, the sensitivity of the näıve full-state con-
troller to estimation errors can be changed by modifying the costs associated with each state
(including adding cost to the angular velocity states), but it is unclear how these costs would
be chosen such that acceptable sensitivities to both estimation errors and disturbances are
simultaneously achieved. Furthermore, although the cascaded controller presented in this
section is not the optimal controller in terms of improving the disturbance sensitivity of the
system, it is still useful due to relative insensitivity to errors in the estimated wheel speed,
ease of implementation, and its ability to straight-forwardly cope with large attitude errors.

3.5 Experimental Validation

In this section we present experimental results to validate the models using two vehicles of
different scales subjected to torque impulse disturbances. An additional test case is presented
where the torque impulse disturbance is large enough to cause saturation of the motor forces.
The improvement of the yaw control authority of the vehicle is verified by commanding a
step change in yaw.

Platform

Two custom quadcopters of different sizes were constructed for testing as shown in Figure 3.1,
with masses differing by a factor of 18. The smaller vehicle uses CL-0720-14 brushed motors
while the larger vehicle uses EMAX MT2208 brushless motors with DYS SN30A electronic

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 25

Table 3.1: Physical parameters of experimental vehicles

Parameter Large Vehicle Small Vehicle
mB 922 g 50 g
JBB,xx 5.8× 10−3 kg m2 3.5× 10−5 kg m2

JBB,zz 10.7× 10−3 kg m2 6.0× 10−5 kg m2

JBW,zz 6.4× 10−4 kg m2 1.7× 10−6 kg m2

fmax 6.86 N 0.24 N
l 0.235 m 0.068 m
κ+ 0.014 m 0.001 m

speed controllers that control the rotational velocity of the motors in closed-loop. The same
motors and speed controllers are used to spin the momentum wheel on each vehicle. The
physical parameters of each vehicle are listed in Table 3.1.

We compare the responses of each vehicle both with and without their momentum wheels
spinning. For the large vehicle, the nominal wheel speed is set to ω̄W = 468 rad s−1, deter-
mined based upon an energy argument: At this speed, the rotational energy stored in the
momentum wheel is twice the maximum rotational energy stored in the propellers of the
vehicle, meaning that the addition of the momentum wheel does not radically change the
danger posed by the vehicle’s rotating parts. For the smaller vehicle, the nominal wheel
speed is set to ω̄W = 1000 rad s−1. At this scale, the rotational energy is not a concern, and
this speed was chosen to be slightly below the maximum that can be achieved by the driving
motor.

For the shown experiments, the position and attitude of the quadcopter are measured
directly by an external motion capture system, and the angular velocity of the quadcopter
is measured using an onboard rate gyroscope. The position controller runs on an offboard
computer and sends commands and attitude measurements to the quadcopter via radio
at 50Hz. The attitude controller is ran onboard the quadcopter at 500Hz. The use of
other sensing technologies (e.g. GPS) are expected to yield similar results, while even more
pronounced improvements may result if onboard vision is used, where estimation performance
is degraded through motion blur.

Control

The H2 error weights for the cascaded controller of Section 3.4 were chosen using Bryson’s
rule [37], which is a heuristic based on the maximum acceptable values of the states and
inputs, so that the output errors are normalized to their maximum acceptable values. For
example, for a maximum roll error φe,max, a cost weighting cφ,θ = φ−1

e,max is used. The cost
weighting are then used to compose state the cost matrices Cp, Cφ,θ, Cψ and input cost
matrices Dp, Dφ,θ, Dψ, which are used to compute corresponding the state feedback H2

optimal controllers as described in Section 3.4. We use dmax as the maximum acceptable
position error, amax is the maximum acceptable acceleration, and again weight the two

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 26

Table 3.2: Parameters used to compute control cost matrices

Parameter Value
|dmax| 2.5 m
|amax| 10 m s−2

|φe,max|, |θe,max|, |ψe,max| 30◦

|∆ωW,max| 50 rad s−1

|τx,max|, |τy,max| fmaxl/2
|τz,max| κ+fmax

|τW,max| 5|τz,max|

horizontal axes similarly due to the symmetry of the vehicle. The maximum acceptable
values used to compute each cost matrix are given in Table 3.2.

In addition to the cascaded feedback controller, a small feedforward term is added to τz
to compensate for the drag torque exerted by the momentum wheel about its axis of rotation
zB as it spins. This drag torque is not included in the system model (3.8), and thus must
be determined experimentally.

Power Consumption

Using the relationship described in Section 3.3 to calculate the mechanical power required
to lift a given mass, the larger vehicle requires 58 W of mechanical power to hover when
the momentum wheel is not attached. However, when the momentum wheel is attached,
an additional 100 g is added to the mass of the vehicle, requiring an additional 11 W of
mechanical power to hover. Furthermore, 4.8 W of mechanical power is required to spin the
wheel at the desired speed of 468 rad s−1, resulting in a 27% increase in power consumption
when the wheel is attached and spinning compared to a vehicle without the wheel attached.
The mechanical power required to spin the wheel is composed of the power consumed by
the motor spinning the wheel (used to overcome aerodynamic drag acting on the spinning
wheel), and the additional power consumed by the propellers (used to compensating for
the torque produced by the wheel motor). The electrical power consumed will of course be
larger, due to losses in the power train, but the relative increase should be approximately
the same.

The increase in power consumption due to the momentum wheel is similar for the smaller
vehicle. Without the wheel the vehicle produces 0.54 W of mechanical power during hover,
and the attached 3.9 g momentum wheel requires and additional 0.07 W to lift and 0.05 W to
spin at 1000 rad s−1, corresponding to an increase in power consumption of 23%. Optimized
designs may be expected to perform substantially better than this.

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 27

Figure 3.5: Test vehicles with attached arm extensions. A falling mass collides with the
arm extension in order to provide an torque impulse disturbance to the vehicle.

Impulse torque disturbance rejection

The torque disturbance rejection capabilities of each vehicle are tested by applying a re-
peatable torque impulse to the vehicle by dropping a mass on the vehicle from above. Arm
extensions are added to each vehicle as shown in Figure 3.5 so that the falling mass does not
collide with the propellers of the vehicle. For the larger vehicle, masses of 67 g and 135 g were
dropped from a height of 1 m to apply torque impulses of 0.092 N m s and 0.186 N m s to the
vehicle respectively. For the smaller vehicle, a mass of 5 g was dropped from a height of 5 cm
to apply an estimated torque impulse of 4.7× 10−4 N m s to the vehicle. Figure 3.6 shows
the responses of each vehicle to these torque impulse disturbances, and Figure 3.7 shows
a sequence of images corresponding to the response of the larger vehicle to the 0.186 N m s
torque impulse disturbance. 1

In each of the experiments, the improvement due to the momentum wheel is clear: A
lower peak tilt error is recorded, smaller horizontal and vertical errors occur, and the required
thrust forces are lower. The improvement of the response of the vehicle with the wheel
spinning over the vehicle without the wheel spinning is particularly clear for the large impulse
on the larger vehicle, shown in Figure 3.6b, being large enough to cause the thrust forces to
saturate only when the wheel is not spinning.

We compare the responses of the vehicles by computing the experimental state feedback
H2 cost of the system trajectory for each test; that is we integrate (3.10) over t ∈ [0, 2.5]
using a position cost of 1 m−1 and roll/pitch torque cost of 1 N−1 m−1. For the large vehicle’s
test cases shown in Figs. 3.6a and 3.6b, the experimental cost when using the wheel is
0.54 and 0.32 respectively when normalized to the cost when the wheel is not used. This
experimentally observed normalized cost is comparable to that predicted by the analytic

1A video demonstrating how the experiments were performed can be viewed at: https://youtu.be/

C2fj2D_2pI8

https://youtu.be/C2fj2D_2pI8
https://youtu.be/C2fj2D_2pI8

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 28

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

H
o
ri

zo
n
ta

l
E

rr
o
r

[m
] ω̄W = 0 rad/s

ω̄W = 468 rad/s

ω̄W = 0 rad/s

ω̄W = 1000 rad/s

−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2

V
er

ti
ca

l
E

rr
o
r

[m
]

0
10
20
30
40
50
60
70

T
il
t

A
n
g
le

[d
eg

]

−30
−20
−10

0
10
20
30

Y
a
w

E
rr

o
r

[d
eg

]

0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze

d
T

h
ru

st
R

a
n
g
e fPi,max

0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

(a)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

H
o
ri

zo
n
ta

l
E

rr
o
r

[m
] ω̄W = 0 rad/s

ω̄W = 468 rad/s

ω̄W = 0 rad/s

ω̄W = 1000 rad/s

−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2

V
er

ti
ca

l
E

rr
o
r

[m
]

0
10
20
30
40
50
60
70

T
il
t

A
n
g
le

[d
eg

]

−30
−20
−10

0
10
20
30

Y
a
w

E
rr

o
r

[d
eg

]

0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze

d
T

h
ru

st
R

a
n
g
e fPi,max

0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

(b)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

H
o
ri

zo
n
ta

l
E

rr
o
r

[m
] ω̄W = 0 rad/s

ω̄W = 468 rad/s

ω̄W = 0 rad/s

ω̄W = 1000 rad/s

−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2

V
er

ti
ca

l
E

rr
o
r

[m
]

0
10
20
30
40
50
60
70

T
il
t

A
n
g
le

[d
eg

]

−30
−20
−10

0
10
20
30

Y
a
w

E
rr

o
r

[d
eg

]

0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze

d
T

h
ru

st
R

a
n
g
e fPi,max

0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

(c)

Figure 3.6: Responses to a torque impulse caused by a collision with a mass dropped from
above. The tilt angle is defined as the angle between zEB and the vertical, and the normalized
thrust range is defined as the minimum range that contains all four thrust forces, which are
normalized to the maximum thrust fmax. The response of the larger vehicle to a 0.092 N m s
torque impulse is shown in (a), the response of the larger vehicle to a 0.186 N m s torque
impulse is shown in (b), and the response of the smaller vehicle to a 4.7× 10−4 N m s torque
impulse is shown in (c). The performance of the vehicle is improved in all three cases when
the wheel is spinning, and an even more significant improvement is observed when the motor
forces saturate, as shown in (b).

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 29

ω
W

=
0

ra
d

/
s

ω
W

=
4
6
8

ra
d

/
s

Figure 3.7: Response of the larger vehicle to a 0.186 N m s torque impulse as shown in Figure
3.6b. The top series of images shows the response without the momentum wheel spinning,
and the bottom series of images shows the response when the momentum wheel is spinning
at 468 rad s−1. Images are spaced 0.2 seconds apart.

model of 0.62, with the discrepancy likely due to modeling errors and actuator saturation in
the case of Figure 3.6b. The smaller vehicle’s experimentally observed performance exceeds
that predicted, most likely due to (comparatively) poor position tracking for the smaller
vehicle. Moreover, the presence of sensor/environmental noise in the system (in addition to
the initial impulse), means that the experimental cost is affected by the choice of integration
length (with the theoretical result corresponding to a noise-free impulse response integrated
over an infinite horizon). The analytic model also does not account for any aerodynamic
effects that may be introduced by the spinning of the momentum wheel, and in general it is
difficult to predict such effects.

Improved yaw authority

Although the magnitude of the angular momentum stored in the momentum wheel does not
affect the sensitivity of the vehicle to torque disturbances about the yaw axis, the wheel can
be used to improve the yaw authority of the vehicle as discussed in Section 3.4. Specifically,
the motor driving the wheel provides an additional yaw torque that results in the wheel either
accelerating or decelerating relative to the vehicle body. The improvement in yaw authority
is experimentally validated by commanding 45◦ step changes in desired yaw in both the
positive and negative directions while the vehicle is hovering. Results are compared to the
response of the vehicle performing the same maneuver without allowing the momentum
wheel to accelerate or decelerate, which is accomplished by setting ∆ωW,max = 0 instead of
∆ωW,max = 50 rad s−1 as given in Table 3.2 and recomputing the associated cost matrices Cψ
and Dψ used to compute the gain matrix Kψ as described in Section 3.5. A response to a

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 30

single trial for the large vehicle is shown in Figure 3.8. 2

The magnitude of the improvement of the yaw authority is dependent on both the limits
on the torque of the motor driving the momentum wheel, and on the tolerable change in
the speed of the wheel. Note, however, that the range of τW can be asymmetric due to the
actuators used to drive the wheel. For example, on the smaller vehicle the wheel is driven
by a unidirectional brushed motor, meaning that the wheel can be accelerated by the motor,
but must rely on friction and drag torque to decelerate the wheel.

Although the controller described in Section 3.4 uses the torque produced by the motor
driving the wheel as a control input, electronic speed controllers (including those used in
these experiments) commonly required speed commands. In order to compute the desired
speed command ω̄W for the momentum wheel motor such that the desired torque τW is
applied, we model the speed of the wheel ωW as a first order system as follows, where c is
the time constant of the wheel (we estimated c ≈ 1 s for the large vehicle).

ω̇W =
1

c
(ω̄W − ωW) (3.18)

Given a desired torque, the desired speed command for the momentum wheel motor is
then computed as

ω̄W = ωW +
c

JBW,zz
τW (3.19)

Step change in position

In order to compare how additional angular momentum affects the maneuverability of the
vehicle, the responses of the larger vehicle to a 1.5 m horizontal step change in desired
position both with and without the momentum wheel spinning are compared in Figure 3.9.
The sudden change in desired thrust direction also results in a sudden change in desired
attitude of the vehicle.

Due to the angular momentum of the wheel, more time is required to change the attitude
of the vehicle when the wheel is spinning. However, because the majority of the maneuver
consists of translating rather than rotating, the responses of the vehicles with and without
the wheel spinning are similar, where the vehicle with the wheel spinning requires slightly
more time to reach the desired position.

3.6 Conclusion

In this chapter we have presented a novel design for a multicopter for use in challenging
environments, exploiting the addition of a momentum wheel for increased robustness to
disturbances. The vehicle dynamics were derived, of which the additional coupling between

2A video of the experiment can be found at https://youtu.be/C2fj2D_2pI8

https://youtu.be/C2fj2D_2pI8

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 31

−10
0

10
20
30
40
50
60

Y
a
w

A
n
g
le

[d
eg

]

∆ωW = 0

∆ωW variable

380
400
420
440
460
480
500
520
540

W
h
ee

l
S
p

ee
d

[r
a
d
/
s]

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3

W
h
ee

l
M

o
to

r
T

o
rq

u
e

[N
m

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze

d
T

h
ru

st
R

a
n
g
e

fPi,max

Figure 3.8: Response of the large vehicle to a step change in desired yaw of 45◦ followed by
a second step change in desired yaw back to 0◦. A controller that allows for some error in
the desired momentum wheel speed outperforms a controller that does not allow the wheel
to accelerate or decelerate.

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 32

0.0

0.5

1.0

1.5

2.0

H
o
ri

zo
n
ta

l
P

o
si

ti
o
n

[m
]

ω̄W = 0 rad/s

ω̄W = 468 rad/s

−10
0

10
20
30
40

T
il
t

A
n
g
le

[d
eg

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time [s]

0.0
0.2
0.4
0.6
0.8
1.0

N
o
rm

a
li
ze

d
T

h
ru

st
R

a
n
g
e

fPi,max

Figure 3.9: Responses of the large vehicle to a 1.5 m horizontal step change in desired position
both with and without the momentum wheel spinning. The vehicle with the wheel spinning
requires slightly more time to reach the desired position.

the vehicle’s roll and pitch dynamics is key to the added robustness. A scaling analysis shows
that greater benefit is expected for smaller vehicles. A simple cascaded control structure is
proposed and implemented in experiment; the experimental results are shown to correspond
closely to that predicted by the analysis of the system.

Specifically, it is shown that as the angular momentum of the wheel is increased, the
vehicle’s position tracking H2 cost monotonically decreases for torque disturbances. For
force disturbances, the cost initially also decreases, but is shown to increase when the wheel
has large angular momentum. As the momentum wheel speed can be varied dynamically in
flight, the vehicle’s flight characteristics can be adapted mid-mission, allowing e.g. for agile
motion followed by steady station keeping.

This increase in robustness comes at additional energetic cost associated with increasing
the vehicle mass, though the amount of added mass can be reduced at the cost of increasing
the kinetic energy stored in the wheel. Furthermore, we show that the closed-loop system
may be extremely sensitive to errors in belief of the wheel speed, but the proposed cascaded
controller is shown to be less sensitive than a näıve full state linearized feedback controller.

Vehicles of the proposed design may be expected to be especially valuable when con-
ducting missions in very sensitive or unpredictable environments, such as when operating

CHAPTER 3. ENHANCED DISTURBANCE REJECTION VIA ANGULAR
MOMENTUM 33

over crowds of people, or near critical infrastructure. Future implementations may consider
replacing the momentum wheel with a large propeller, allowing the vehicle to increase the
propellers’ surface area and potentially increasing overall system efficiency; other designs
may enclose the momentum wheel in a very robust cage, allowing the wheel to operate at
very high velocities with low mass.

34

Chapter 4

Improved Operational Capabilities via
Aerial Morphing

Similar to the previous chapter, this chapter presents a modified quadcopter design that
enables the vehicle to perform tasks that a conventional quadcopter would be unable to per-
form. Specifically, the design and control of a novel quadcopter capable of changing shape
mid-flight is presented, allowing for operation in four configurations with the capability of
sustained hover in three. The normally rigid connections between the arms of the quadcopter
and the central body are replaced by free-rotating hinges that allow the arms to fold down-
ward; no additional actuators beyond the four motors that drive the propellers are used.
Configuration transitions are accomplished by either reducing or reversing the thrust forces
produced by specific propellers during flight. Constraints placed on the control inputs of
the vehicle prevent the arms from folding or unfolding unexpectedly, allowing for the use of
existing quadcopter controllers and trajectory generation algorithms. For our experimental
vehicle at hover, we find that these constraints result in a 36% reduction of the maximum
yaw torque the vehicle can produce, but do not result in a reduction of the maximum thrust
or roll and pitch torques. Furthermore, the ability to change configurations is shown to
enable the vehicle to traverse small passages, perch on hanging wires, and perform simple
grasping tasks.

Note that the material presented in this chapter is based on the following works, with
the latter paper currently under review at IEEE Transactions on Robotics (T-RO). As the
latter paper is an extension of the former, this chapter is largely based upon the latter paper
and only differs slightly in terms of the notation used in the paper and the discussion of the
control of the vehicle, as this has already been partially described in Chapter 2.

• Nathan Bucki and Mark W Mueller. “Design and Control of a Passively Morph-
ing Quadcopter”. In: IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2019, pp. 9116–9122

• Nathan Bucki, Jerry Tang, and Mark W Mueller. “Design and Control of a
Midair Reconfigurable Quadcopter using Unactuated Hinges”. In: arXiv preprint

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 35

arXiv:2103.16632 (2021)

4.1 Introduction

In recent years, many extensions of the original quadcopter design have been proposed in
order to allow for new tasks to be performed, improving their utility. However, this typically
requires the vehicle to carry additional hardware, which not only can reduce flight time due
to the increased weight of the system, but can also increase the complexity of the vehicle,
making it more difficult to build and maintain, which can lead to a higher likelihood of
system failures. In this chapter we present a design change to the quadcopter which allows
the vehicle to change shape during flight, perch, and perform simple aerial manipulation, all
without requiring significant hardware additions (e.g. motors or complex mechanisms).

Related Work

Several aerial vehicles capable of changing shape have been previously developed. For ex-
ample, in [40] a vehicle capable of automatically unfolding after being launched from tube
is presented, and in [41] a vehicle is presented which uses foldable origami-style arms to
automatically increase its wingspan during takeoff. Although such designs excel in enabling
the rapid deployment of aerial vehicles, they do not focus on repeated changes of shape, and
thus require intervention to be returned to their compressed forms.

Vehicles capable of changing shape mid-flight have also been developed in order to enable
the traversal of narrow passages. In [42] a vehicle that uses several servomotors to actuate
a scissor-like structure that can shrink or expand the size of the vehicle is presented, and in
[43] a single servomotor is used in conjunction with an origami structure to enable the arms
of a quadcopter to shorten or lengthen during flight. Vehicles that use a central actuator to
change the angle of their arms in an X-shape are presented in [44] and [45], and a vehicle that
uses four servomotors to change each arm angle is presented in [46] and extended in [47]. In
[48] and [49] a quadcopter design is presented that is capable of using one or more actuators
to reposition the propellers of the vehicle to be above one another such that the horizontal
dimension of the vehicle is reduced. Similarly, [50] uses a single actuator to reposition the
propellers of the vehicle to be in a horizontal line, and demonstrates the vehicle being used
to traverse a narrow gap.

A large body of work has also been produced regarding the use of quadcopters to perform
aerial manipulation. Aerial vehicles with the capability to interact with the environment open
the door to a wide range of potential applications, e.g. performing construction as shown
in [51]. Typically such designs involve attaching one or more robot arms to a quadcopter,
as shown in [52], [53], and [54] for example. Several designs involve changing the structure
of the vehicle, such as [46] (described previously) and [55], which describes a ring-shaped
multicopter-like vehicle capable of changing the relative position of each propeller such that
the body of the vehicle can be used to grasp objects. Other designs, such as [56], use passive

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 36

elements to engage a gripper and a single actuator to disengage the gripper. However, such
designs require the vehicle to carry one or more actuators beyond the four motors used to
drive the propellers (e.g. servomotors used for opening/closing a gripper), increasing the
weight of the vehicle and therefore decreasing flight time. Additional examples of vehicles
used to perform aerial manipulation can be found in the aerial manipulation survey papers
[57] and [58].

Finally, several designs have been proposed that enable aerial vehicles to perch on struc-
tures in the environment. Such vehicles are able to fly to a desired location, attach themselves
to a feature in the environment, and then remain stationary without consuming significant
amounts of energy (e.g. while monitoring the surrounding area). In [59] a passive adhesive
mechanism is proposed for perching on smooth surfaces, and in [60] adhesive pads are used
in conjunction with a servomotor to attach and detach the vehicle from vertical walls. In [61]
and [62] grippers actuated using servomotors are used to enable perching on bars. Similarly,
[63] describes a purely passive gripper that used the weight of the vehicle to close a gripper
around a horizontal bar.

The work presented in this chapter additionally extends [38] in several ways, enabling
the vehicle to perform several of the previously mentioned tasks while requiring only minor
changes to the design and control of the vehicle compared to a conventional quadcopter.

Capabilities of the novel vehicle

In [38] a quadcopter design was presented that replaced the typically rigid connections be-
tween the arms of the quadcopter and the central body with sprung hinges that allow for the
arms of the quadcopter to fold downward when low thrusts are produced by the propellers.
This feature enabled the vehicle to reduce its largest dimension while in projectile motion,
allowing the vehicle to fly towards a narrow gap, collapse its arms, and then unfold after
traversing the gap. In this work we perform two significant design changes. First, we remove
the springs used to fold the arms, and instead fold each arm by reversing the thrust direction
of the attached propeller. Second, we change the geometry of the vehicle such that when two
opposite arms are folded, the thrust vectors of the associated propellers are offset from one
another, allowing for a yaw torque to be produced when the thrust direction of the propellers
is reversed.

No actuators or complex mechanisms are added to the vehicle, keeping its mass low,
and only standard off-the-shelf components (e.g. propellers, motors, and electronic speed
controllers) are used in the design, with the exception of the custom 3D printed frame of
the vehicle. Thus, the main difference between the vehicle described in this chapter and
a conventional quadcopter is the fact that each arm is attached to the central body via a
rotational joint rather than with a rigid connection.

These changes enable the vehicle to perform a number of tasks as shown in Figure 4.1,
namely:

• Stable flight as a conventional quadcopter with all four arms unfolded

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 37

(a) (b)

(c) (d)

(e)

Figure 4.1: Images of the experimental vehicle performing a variety of different tasks. The
vehicle is capable of flying like a conventional quadcopter when in the unfolded configuration
(a), but when flying in the two-arms-folded configuration is able to, e.g., traverse narrow
tunnels (b) and perform simple aerial manipulation tasks such as carrying a box (c). Addi-
tionally, by allowing all four arms to fold, the vehicle is able to perch on thin wires (d), and
even traverse narrow gaps in projectile motion (e) (view from below).

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 38

• Stable flight with two arms folded, allowing for the traversal of narrow tunnels

• Grasping of and flight with objects of appropriate dimensions

• Perching on wires with all four arms folded

• Traversal of narrow gaps in projectile motion with all four arms folded

By avoiding the use of complex mechanisms or additional actuators beyond the four
motors used to drive the propellers, the proposed vehicle is capable of flying in the unfolded
configuration with an efficiency nearly identical to that of a similarly designed conventional
quadcopter. The main drawback of our design is the fact that stricter bounds must be placed
on the four thrust forces such that the vehicle remains in the desired configuration during
flight. However, as we will show in Section 4.4, these bounds do not significantly reduce the
agility of the vehicle except in terms of a decrease of the maximum yaw torque the vehicle
can produce in the unfolded configuration.

4.2 System Model

In this section we follow [38] in defining a model of the system and deriving the dynamics
of the vehicle. The dynamics of the vehicle are then used in Section 4.3 to derive bounds
on the control inputs such that the vehicle remains in the desired configuration. Note that
the notation and derivation of the vehicle dynamics also closely follows that of a conven-
tional quadcopter as described in Chapter 2, but with additional consideration given to the
unactuated degrees of freedom added to the vehicle.

The vehicle consists of four rigid arms connected to a central body via unactuated rotary
joints (i.e. hinges) which are limited to a range of motion of 90◦. Unlike [38], however,
each hinge is positioned such that the vehicle is only 180◦ axis-symmetric rather than 90◦

axis-symmetric. Figure 4.2 shows a top-down view of the vehicle, including the orientation
of each of the hinges and arms.

Model

The system is modeled as five coupled rigid bodies: the four arms and the central body of
the vehicle. The inertial frame is notated as E, the frame fixed to the central body as C, and
the frame fixed to arm i ∈ {1, 2, 3, 4} as Ai. The rotation matrix of frame C with respect to
frame E is defined as RCE such that the quantity vC expressed in the C frame is equal to
RCEvE where vE is the same quantity expressed in frame E. The orientation of arm i with
respect to the central body is defined through the single degree of freedom rotation matrix
RAiC . Furthermore, let Pi be a point along the thrust axis of propeller i, and let Hi be the
point where the rotation axis of hinge i intersects with the plane swept by the thrust axis of
propeller i as arm i rotates about its hinge.

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 39

Figure 4.2: Top-down view of vehicle in the unfolded configuration (left) and arm A1 (right).
In the unfolded configuration, the thrust axis of each rotor is parallel and equidistant from
its neighbor, as is typical for quadcopters. Each arm is connected to the central body by a
hinge that rotates in the yAi

direction, allowing the arms to independently rotate between
the folded and unfolded configurations. The orientation of each hinge relative to the central
body is determined by θ. Each propeller produces a thrust force fpi and torque τpi at Pi in
the direction of zAi

.

The internal reaction forces and torques acting at the hinge are defined as fri and τri
respectively. The propeller attached to arm i produces scalar thrust force fpi and aerody-
namic reaction torque τpi in the zAi

direction. We assume that the torque produced by each
propeller is piecewise linearly related to the propeller thrust force as give in equation (2.1).

The mass and mass moment of inertia of the central body taken at the center of mass of
the central body are denoted mC and JC respectively, and the mass and mass moment of
inertia arm i taken at its center of mass are denoted mAi

and JAi
respectively.

Dynamics

The translational and rotational dynamics of the central body of the vehicle and the four
arms are found using Newton’s second law and Euler’s law respectively [15]. We assume that
the only external forces and torques acting on the vehicle are those due to gravity and the
thrusts and torques produced by each propeller (for example, aerodynamic effects acting on
the central body or arms are not considered). The time derivative of a vector is taken in the
reference frame in which that vector is expressed.

We express the translational dynamics of the central body in the inertial frame E, and the

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 40

rotational dynamics of the central body in the body-fixed frame C. Let g be the acceleration
due to gravity. The translational dynamics of the central body are then:

mCd̈
E
CE = mCg

E +REC

4∑
i=1

fCri (4.1)

and the rotational dynamics of the central body are:

JCC ω̇
C
CE + S

(
ωCCE

)
JCCω

C
CE

=
4∑
i=1

(
τCri + S

(
dCHiC

)
fCri
) (4.2)

We express the translational and rotational dynamics of arm i in frame Ai. The transla-
tional dynamics of arm i are (note fAi

ri
= RAiCfCri):

mAi

(
RAiEd̈ECE +α

)
= mAi

RAiEgE + zAi
Ai
fpi − fAi

ri
(4.3)

where α is

α =RAiC
(
S
(
dCCHi

)
ω̇CCE + S

(
ωCCE

)
S
(
dCCHi

)
ωCCE

)
+ S

(
dAi
HiAi

)
ω̇Ai
AiE

+ S
(
ωAi
AiE

)
S
(
dAi
HiAi

)
ωAi
AiE

(4.4)

The rotational dynamics of arm i are (note τAi
ri

= RAiCτCri):

JAi
Ai
ω̇Ai
AiE

+ S
(
ωAi
AiE

)
JAi
Ai
ωAi
AiE

= S
(
dAi
PiAi

)
zAi
Ai
fpi

+ zAi
Ai
τpi − τAi

ri
− S

(
dAi
HiAi

)
fAi
ri

(4.5)

The equations of motion of the arm are written in terms of ω̇Ai
AiE

and ωAi
AiE

for convenience,
which evaluate to:

ωAi
AiE

= ωAi
AiC

+RAiCωCCE

ω̇Ai
AiE

= ω̇Ai
AiC

+RAiCω̇CCE − S
(
ωAi
AiC

)
RAiCωCCE

(4.6)

Furthermore, note that the reaction torque acting in the rotation direction of hinge i is
zero when arm i is rotating between the folded and unfolded configurations (yAi

Ai
· τAi

ri
= 0),

positive when arm i is in the folded configuration (yAi
Ai
· τAi

ri
≥ 0), and negative when arm

i is in the unfolded configuration (yAi
Ai
· τAi

ri
≤ 0). Thus, in order for arm i to remain in a

desired position when starting in that position (i.e. folded or unfolded), the vehicle must
be controlled such that yAi

Ai
· τAi

ri
remains either positive (to remain folded) or negative (to

remain unfolded). Such a method is presented in the following section.

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 41

4.3 Control

In this section we describe the controllers used to control the vehicle in each of its config-
urations. We focus on three distinct configurations: the unfolded configuration (shown in
Figure 4.1a), the two-arms-folded configuration (shown in Figures 4.1b and 4.1c), and the
four-arms-folded configuration (shown in Figure 4.1e).

The vehicle is capable of controlled hover in both the unfolded and two-arms-folded
configurations. In the unfolded configuration, the vehicle acts as a conventional quadcopter;
each of the four propellers produce positive thrust forces (fpi > 0) in the zC direction.
However, in the two-arms-folded configuration, only two propellers of the same handedness
produce positive thrust forces in the zC direction; the other two propellers spin in reverse,
producing negative thrust forces that cause their associated arms to fold downward. In this
configuration, the folded arms are positioned such that the thrust forces produced by their
associated propellers create a yaw torque that counteracts the yaw torque produced by the
other two propellers. Note that for the design considered in this chapter, the arms have a
90◦ range of motion such that the thrust produced by a folded arm has no component in the
zC direction.

In the four-arms-folded configuration each of the four propellers are spun in reverse
(fpi < 0), resulting in all four arms folding. Although the vehicle is not capable of controlled
hover in this configuration, the attitude of the vehicle can still be fully controlled, allowing
for the vehicle to reorient itself while in projectile motion.

The controllers used to control the vehicle in the unfolded and two-arms-folded configura-
tion follow the same structure described in Section 2.4, with the main difference between the
controllers being the mapping matrix used to compute the individual thrust forces described
in Section 2.3. Specifically, the same cascaded control structure typical of multicopter con-
trol (shown in Figure 2.2) is used in both configurations, including both the position and
attitude controllers described in Section 2.4.

A similar control structure is used in the four-arms-folded configuration. However, be-
cause the four arms do not produce thrust in the zB direction while folded, we omit the
position controller and instead command desired attitudes to the attitude controller di-
rectly. The individual thrust forces that minimize the sum of each thrust force squared
while producing the desired torque are then computed. Note these thrust forces can be
efficiently computed using the Moore-Penrose pseudoinverse of the matrix relating the four
thrust forces to the torque acting on the vehicle.

Individual thrust force computation

As described in Section 2.3, the individual propeller thrust forces u = (fp1 , fp2 , fp3 , fp4) are
related to the desired total thrust in the zC direction fΣ and the desired torques about the
axes of the body-fixed C frame, τB = (τx, τy, τz) through a mapping M given in (2.4). Recall
that this mapping is computed using the geometry of the vehicle and the torque produced
by each propeller as a function of the thrust it produces.

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 42

Because the thrust direction of each propeller is constant in the arm-fixed frame Ai rather
than in the central body-fixed frame C, we modify the computation of the i-th columns of
MfΣ

and MτB as given in equation (2.5) to be the following:

MfΣ
[i] = zCAi

· zCC , MτB [i] = S
(
dCPiB

)
zCAi

+ κpiz
C
Ai

(4.7)

In the unfolded configuration, the mapping matrix Mu remains identical to that of a
conventional quadcopter as given by (2.6). However, the mapping M2f for the two-arms-
folded configuration with arms A2 and A4 folded and θ defined as shown in Figure 4.2 is
defined as follows:

M2f =


1 0 1 0
−l/2 px l/2 −px
−l/2 −py l/2 py
−κ+ −pz −κ+ −pz


px = dCP2C,z

cos(45◦ + θ)− κ− sin(45◦ + θ)

py = dCP2C,z
sin(45◦ + θ) + κ− cos(45◦ + θ)

pz =
l
√

2

2
sin θ

(4.8)

where we note that the arms are of equal length, i.e. dCP1C,z
= dCP2C,z

= dCP3C,z
= dCP4C,z

.
Finally, the mapping M4f for the four-arms folded configuration is defined as:

M4f =


0 0 0 0
px px −px −px
py −py −py py
pz −pz pz −pz

 (4.9)

The structure of these mappings can be analyzed to infer how different parameters of the
vehicle affect how the vehicle can be controlled in each configuration. For example, we note
that when the arms are not angled (i.e. when θ = 0 as was done in our prior work [38]),
the term pz as defined in (4.8) equals zero. In this case, the vehicle would only be able to
produce negative yaw torques due to the fact that the folded arms would be unable to offset
the yaw torque produced by the two unfolded arms. Similarly, if θ = 0, the vehicle would be
unable to produce any yaw torque in the four-arms-folded configuration as the bottom row
of M4f would be zero. However, we observe that (2.6) does not depend on θ at all, showing
that the thrust mapping matrix is unaffected by the choice of arm angle in the unfolded
configuration.

Note that, unlike Mu, both M2f and M4f depend on the position of the center of mass of
the vehicle in the zC direction due to the fact that the thrust forces produced by the folded
arms are perpendicular to zC . Thus, if the position of the center of mass of the vehicle in the
zC direction is changed (e.g. by adding a payload to the vehicle as shown in Figure 4.1c),
the mappings M2f and M4f must reflect this change.

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 43

Furthermore, because the thrust forces of the folded arms are perpendicular to zC , there
can exist a nonzero force in the xC and yC directions when flying in the two- or four-arms
folded configurations. In the two-arms-folded configuration with arms A2 and A4 folded,
for example, thrusts fp2 and fp4 act in opposite directions such that they produce a force
of magnitude |fp2 − fp4|. Because this force is zero at hover and remains small for small
τx and τy (note that |fp2 − fp4| is not dependent on fΣ or τz due to the structure of M2f),
we choose to treat such forces as disturbances in order to maintain the simplicity of the
proposed controller.

Attitude control

The attitude controller used to control the vehicle is identical to that described in Section 2.4,
but uses different input cost matrices depending on the configuration of the vehicle. That is,
equation (2.14) will result in a different input cost matrix RτB depending on which thrust
mapping matrix is used, thus changing the feedback matrix computed when synthesizing the
infinite-horizon LQR attitude controller.

Furthermore, in this work we choose the diagonal entries of Ru based upon whether the
associated propeller is spinning in the forward or reverse direction, as the propeller exhibits
different characteristics in each mode of operation. For example, conventional propellers
produce significantly less thrust when spinning in the reverse direction as they are typically
optimized to spin in only the forward direction. Thus, we define Ru = diag(r+, r+, r+, r+) for
the unfolded configuration, Ru = diag(r+, r−, r+, r−) for the two-arms-folded configuration,
and Ru = diag(r−, r−, r−, r−) for the four-arms-folded configuration, where r+ is the cost
associated with the propellers spinning in the forward direction, and r− is the cost associated
with the propellers spinning in the reverse direction. In general, r+ < r− as conventional
quadcopter propellers are optimized to spin in the forward direction.

By defining the input cost matrix RτB as a function of the mapping matrix MτB , we
can straightforwardly synthesize different infinite-horizon LQR attitude controllers for each
configuration of the vehicle. Furthermore, the torque cost matrix RτB can be used to analyze
the ability of the vehicle to control its attitude in different configurations, as it describes the
cost of producing an arbitrary torque on the vehicle while implicitly accounting for the
geometry of the vehicle due to its dependence on MτB .

Thrust limits

Although the thrust produced by each propeller is already bounded by the performance
limitations of the motor driving it, we impose additional bounds which ensure the vehicle
remains in the desired configuration. Imposing these bounds ensures that none of the arms
begin to fold or unfold unexpectedly, which means the mappings Mu, M2f , and M4f derived
in Section 4.3 will remain valid during flight. Of course, the bounds are not imposed when
changing between configurations.

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 44

Rather than bounding the individual thrust forces, we choose to instead bound fΣ and
τB using the model derived in Section 4.2. Our approach is similar to that of [38], but differs
in its inclusion of the arm angle θ, resulting in a modified expression for the bound.

Unfolded configuration bounds

We first note that by enforcing bounds that prevent each arm from folding or unfolding, the
vehicle can be treated as one rigid body rather than five coupled rigid bodies. Thus, the
acceleration of the center of mass of the vehicle expressed in the inertial frame d̈EBE is:

d̈EBE = gE +
1

mΣ

RECzCCfΣ (4.10)

where the total vehicle mass is mΣ = mC + 4mAi
.

Similarly, the angular acceleration of the vehicle can be written as follows, where JBΣ
represents the moment of inertia of the vehicle taken at its center of mass and expressed in
the body-fixed frame C. We assume that the angular velocity of the vehicle ωCCE is small
such that second order terms with respect to ωC=CE can be neglected (e.g. S

(
ωCCE

)
JBΣω

C
CE).

ω̇CCE =
(
JBΣ
)−1

τB (4.11)

Next, after some algebraic manipulation of (4.3) and (4.5) (omitted here for brevity), we
find that the reaction torque about hinge i, i.e. yAi

Ai
·τAi

ri
, is linear with respect to d̈EBE, ω̇CCE,

and propeller thrust fpi . Recall that fpi can be computed by inverting the mapping given in

(2.4), meaning that d̈EBE, ω̇CCE, and fpi are all linear functions of fΣ and τB. Thus, we find
that the torque about hinge i is also a linear function of fΣ and τB.

As discussed previously, arm i will remain in the unfolded configuration when yAi
Ai
·τAi

ri
≤

0. Therefore, because yAi
Ai
·τAi
ri

is linear with respect to fΣ and τB, the following four bounds
can be computed that ensure each of the four arms remain in the unfolded configuration:

cfifΣ + cxiτx + cyiτy + cziτz ≥ 0, i ∈ {1, 2, 3, 4} (4.12)

where cfi , cxi , cyi , and czi are all constants that depend on the physical attributes of the
vehicle.

For the unfolded configuration, the constants in (4.12) are as follows. Here we have
included the assumption that JBΣ = diag(JBΣ,xx, J

B
Σ,yy, J

B
Σ,zz) in order to allow for clearer

analysis of cxi , cyi , and czi . We give the magnitudes of each term, noting that cxi , cyi , and
czi have different signs depending which arm they are associated with.

cfi =
1

4
dAi
PiHi,x

− dAi
AiHi,x

mAi

mΣ

(4.13)

|cxi | =
dAi
PiHi,x

2l
−
J̃Ai
Ai,yy

cos(45◦ + θ) + m̃A sin(45◦ + θ)

JBΣ,xx
(4.14)

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 45

|cyi | = −
dAi
PiHi,x

2l
+
J̃Ai
Ai,yy

sin(45◦ + θ) + m̃A cos(45◦ + θ)

JBΣ,yy
(4.15)

|czi | =
dAi
PiHi,x

4κ+
− m̃A

JBΣ,zz
(4.16)

where m̃A and J̃Ai
Ai,yy

are

J̃Ai
Ai,yy

=
(
JAi
Ai

+mAi
S
(
dAi
AiHi

)
S
(
dA1
CA1

))
yy

(4.17)

m̃A = mAi
dAi
AiHi,x

dA1
CH1,y

(4.18)

Because of the equal magnitudes of the constants cfi , cxi , cyi , and czi in the unfolded
configuration, we can aggregate the four bounds given in (4.12) into a single bound:

cfifΣ − |cxiτx| − |cyiτy| − |cziτz| ≥ 0 (4.19)

Note that (4.19) can always be satisfied by increasing fΣ, as this corresponds to requiring
each propeller to produce more thrust (note that in general cfi > 0). By examining (4.13),
we observe that the bound becomes less restrictive when, e.g., the ratio of the mass of an
arm to the total mass of the vehicle decreases, as this results in a larger magnitude cfi .
Similarly, because the magnitude of czi decreases as κ+ increases, the bound can be made
less restrictive by, e.g., choosing propellers with a larger magnitude κ+.

Finally, note that by writing this bound as a function of fΣ and τB, we can apply a
similar method to that presented in [64] to reduce these control inputs in the event that the
bound is not satisfied. Specifically, if the controller presented in the previous subsections
produces a fΣ and τB that does not satisfy (4.19), we first reduce the magnitude of the yaw
torque τz until the bound is satisfied or τz = 0. Next, if the bound is still not satisfied, we
increase fΣ until the bound is satisfied or it reaches the maximum total thrust the propellers
can produce. If the maximum total thrust is reached, then the roll and/or pitch torques are
reduced until the bound is satisfied. In practice, however, decreasing the roll and/or pitch
torques in order to prevent the arms from folding is seldom necessary due to the magnitude
of cxi and cyi relative to the other terms.

Two- and four-arms-folded configuration bounds

Similar expressions for cfi , cxi , cyi , and czi can be found for the two- and four-arms-folded
configurations, which we compute using a computer algebra system due to their algebraic
complexity (and thus omit here for brevity).1 Note that no aggregate bound such as (4.19)
exists for the two- or four-arms-folded configuration, and thus it is necessary to enforce each

1We provide code for computing these bounds, as well as performing much of the other
analyses and controller syntheses described in this chapter, at: https://github.com/nlbucki/

MidairReconfigurableQuadcopter

https://github.com/nlbucki/MidairReconfigurableQuadcopter
https://github.com/nlbucki/MidairReconfigurableQuadcopter

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 46

bound given by (4.12) individually. However, the hierarchical modification of the control
inputs fΣ and τB described previously can still be used to ensure the bounds are satisfied,
guaranteeing that the vehicle remains in the desired configuration under the previously stated
assumptions.

Numerical values for cfi , cxi , cyi , and czi are given in Section 4.4 for the experimental
vehicle in both the unfolded and two-arms-folded configurations. We do not provide such
values for the four-arms-folded configuration, as in practice we have found it to be unneces-
sary to enforce such bounds. This is because the thrust forces required to transition into the
four-arms-folded configuration are typically large enough to prevent the arms from unfolding
without the need to enforce additional bounds.

Configuration transitions

Next we describe the method used to transition between configurations of the vehicle. We
choose to focus on the transitions between the unfolded and two-arms-folded configurations
as well as between the unfolded and four-arms-folded configurations, as these are the only
transitions required to produce the behaviors of the vehicle demonstrated in this chapter.
An example of the transition from the unfolded configuration to the two-arms-folded config-
uration and back is given in Section 4.5, and an example of the transition from the unfolded
configuration to the four-arms-folded configuration and back is given in Section 4.5.

When transitioning between the unfolded and two-arms-folded configurations, we have
found it sufficient to instantaneously change between the controller used in the unfolded
configuration and the controller used in the two-arms-folded configuration. This discrete
change in controllers is largely enabled by the fact that the vehicle possesses significant
enough agility in either configuration to recover from small disturbances encountered during
the transition. However, the transition is complicated by the fact that the vehicle expe-
riences a significant yaw disturbance during the transition. This yaw disturbance occurs
because it is necessary to reverse the rotation direction of two of the propellers of the same
handedness during the transition. Specifically, the reversing propellers cannot offset the yaw
torque produced by the propellers attached to the unfolded arms, which remain spinning in
the forward direction. Additionally, the revering propellers experience a change in angular
momentum that results in a corresponding change in angular velocity of the vehicle. Thus,
after completing the maneuver, the vehicle will have a significantly different yaw angle and
yaw rate than when the maneuver was initiated. In practice, we deal with this difference in
yaw angle by choosing the post-transition desired yaw angle such that once the maneuver is
completed the yaw error is small.

Unlike the transition to or from the two-arms-folded configuration, the transitions be-
tween the unfolded and four-arms-folded configurations are accomplished by commanding
constant forward or reverse thrusts while the four arms are moving to the unfolded or folded
configurations respectively. After all four arms have finished transitioning, we resume con-
trolling the vehicle using either the unfolded or two-arms-folded controller as appropriate.
The period of constant thrusts is required to ensure that all four arms fold or unfold simulta-

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 47

neously, and prevents any attitude errors that would otherwise be introduced by attempting
to control the vehicle while the arms are transitioning (as Mu and M4f would not be valid
during the transition).

4.4 Experimental Vehicle Design

In this section we discuss the design of the experimental vehicle shown in Figure 4.1. We
start by describing how the arm angle was chosen based upon other properties of the vehicle,
then discuss how the properties of the chosen powertrain (i.e. the battery, speed controllers,
motors, and propellers) affect the vehicle design, and finally discuss how the design of the
vehicle influences several important properties of the proposed controllers for each configu-
ration of the vehicle.

The properties of the experimental vehicle are given in Table 4.1. The overall dimensions
of the experimental vehicle were chosen to be as similar as possible to a commonly used
quadcopter design. Specifically, 8 in propellers spaced 24 cm apart are used, which correspond
to the same spacing and size of the propellers that would be used with a DJI F330 frame
(e.g. as used in [18]). We chose to use commonly available components in the vehicle
design to demonstrate its similarity to a conventional quadcopter, and designed the vehicle
to have a similar performance (in terms of power consumption and agility) as a conventional
quadcopter when flying in the unfolded configuration.

Onboard the vehicle, a Crazyflie 2.0 flight controller is used to run the attitude con-
troller and to transmit individual propeller angular velocity commands to four DYS SN30A
electronic speed controllers (ESCs) at 500Hz. The vehicle is powered by a three cell, 40C,
1500 mA h LiPo battery, and four EMAX MT2208 brushless motors are used to drive four
Gemfan 8038 propellers.

A motion capture system is used to localize the vehicle, although in principal any suffi-
ciently accurate localization method (e.g. using onboard cameras) could be used. Note that
we do not directly measure the position of any individual arm of the vehicle, and instead
only measure the position and attitude of the central body of the vehicle. The position and
attitude of the vehicle are measured by the motion capture system at 200Hz, and the angular
velocity of the vehicle is measured at 500Hz using an onboard rate gyroscope. The position
controller runs on an offboard laptop and sends commands to the vehicle via radio at 50Hz.

Choice of arm angle

We choose the angle that each arm makes with the diagonal of the vehicle θ, as shown in
Figure 4.2, such that the vehicle is capable of hovering in the two-arms-folded configuration.
That is, the vehicle should be capable of producing a total thrust fΣ to offset gravity while
producing zero torque on the vehicle.

Let the thrust each propeller can produce be bounded by fpi ∈ [fmin, fmax], where fmin

and fmax are determined by the physical limits of the powertrain of the vehicle. Note that

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 48

Table 4.1: Experimental Vehicle Parameters

Symbol Parameter Value
mAi

Arm mass 67 g
mC Central body mass 356 g
mΣ Total vehicle mass 624 g

κ+ Propeller torque per
unit positive thrust

0.0172 Nm/N

κ−
Propeller torque per
unit negative thrust

0.038 Nm/N

fmin Minimum thrust per propeller −3.4 N
fmax Maximum thrust per propeller 7.8 N
θ Arm angle 11.9◦

l
Distance between

adjacent propellers
24 cm

dCCH1

Position of central body center
of mass relative to hinge 1

(written in B frame)

−4.5 cm
7.1 cm
−0.2 cm


dAi
HiAi

Position of hinge relative
to arm center of mass
(written in arm frame)

−7.6 cm
0 cm
−1.4 cm


dAi
PAi,x

Distance of propeller from
arm center of mass

1.4 cm

in our case fmin < 0 unlike conventional quadcopters which only allow propellers to spin in
the forward direction.

We wish to find θ such that M2fu = (mΣg, 0, 0, 0) with M2f as given in (4.8) while
satisfying constraints on the thrusts each propeller can produce. As the constraints τx =
τy = 0 can be trivially satisfied for any choice of θ when fp1 = fp3 and fp2 = fp4 , we focus
on the constraints on the total thrust fΣ and yaw torque τz:

fp1 + fp3 ≥ mΣg (4.20)

−κ+ (fp1 + fp3)− l
√

2

2
sin θ (fp2 + fp4) = 0 (4.21)

Thus, the following two inequalities must be satisfied in order for the vehicle to be able
to hover with two arms folded:

θ ≥ sin−1

(
−κ+mΣg

l
√

2fmin

)
fmax ≥

mΣg

2

(4.22)

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 49

Figure 4.3: Top-down view of the vehicle in the two-arms-folded configuration. The minimum
horizontal dimension of the vehicle d increases as the arm angle θ increases.

Because the geometry of the experimental vehicle is defined such that an increase in
θ corresponds to an increase in the minimum dimension d of the vehicle in the two-arms-
folded configuration as shown in Figure 4.3, we choose the smallest θ such that the vehicle
has sufficient control authority to produce reasonable magnitude thrusts and torques with
two arms folded. Specifically, we choose

θ = sin−1

(
−κ+mΣg

l
√

2fdes

)
(4.23)

where fdes > fmin is the nominal thrust force produced by each of the two folded arms during
hover. We choose fdes to be roughly half fmin (recall fmin < 0) so that the vehicle is capable
of producing roughly equal magnitude yaw torques in each direction.

Note that the bound presented in (4.22) is also dependent on several other parameters
of the vehicle. For example, if a smaller θ is desired, it is advantageous to minimize both
the mass of the vehicle mΣ and the coefficient κ+ that relates the thrust produced by each
propeller to the torque acting about its rotation axis. Coincidentally, minimizing these
quantities is equivalent to minimizing the power consumption of the vehicle at hover, which
is typically a preeminent concern when designing aerial vehicles. Thus, no significant trade-
off exists between the power consumption of the vehicle and the choice of θ.

Powertrain selection

As discussed in the previous subsection, the arm angle θ is dependent on both the torque
per unit positive thrust produced by each propeller κ+ as well as the maximum magnitude
thrust each propeller can produce when spinning in reverse fmin. Thus, in order to minimize
θ, the ratio between κ+ and fmin must be minimized. To this end, the powertrain (i.e.
battery, speed controllers, motors, and propellers) is chosen such that θ is minimized while
simultaneously minimizing the power consumption of the vehicle while flying in the unfolded
configuration, as this would likely be the primary mode of operation of the vehicle. In our

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 50

model, fmin and fmax are determined by the design of the powertrain, and κ+ and κ− are
determined by the chosen propellers.

Although we spin several of the propellers in the reverse direction in the two- or four-
arms-folded configurations, this does not imply that it would necessarily be advantageous
to use symmetric propellers (sometimes referred to as “3D propellers”) which are designed
to spin in both directions. When compared to conventional propellers, symmetric propellers
have the advantage of being able to produce much larger thrusts when spinning in reverse
(i.e. fmin is larger in magnitude), but this comes at the cost of a smaller maximum forward
thrust fmax and a larger torque per unit positive thrust κ+. Thus, it is possible that the use
of symmetric propellers may lead to a larger required θ if the ratio of κ+ to fmin is larger
than that of a conventional propeller. Additionally, fmax must still be large enough to satisfy
the constraint given in (4.22), which may be difficult to achieve using symmetric propellers.
Finally, the use of symmetric propellers would greatly increase the power consumption of
the vehicle when hovering in the unfolded configuration, as symmetric propellers are not
optimized to minimize power consumption compared to conventional propellers.

To this end, we choose to use conventional quadcopter propellers on the experimental
vehicle. Figure 4.4 shows how the thrust and torque produced by a Gemfan 8038 propeller
are related to the rotational speed of the propeller, demonstrating the difference in thrust
produced by the propeller when spinning in the forward and reverse directions. We found
that the powertrain of the experimental vehicle was capable of driving the propeller to
produce up to 3.4 N of thrust in the reverse direction and 7.8 N of thrust in the forward
direction with κ+ = 0.0172 Nm/N and κ− = 0.038 Nm/N. This lead to a choice of θ = 11.9◦

according to (4.23) with fdes = 1.5 N.
Finally, we note that although in theory fpi can achieve any value between fmin and

fmax, in practice we restrict fpi to not pass through zero unless the vehicle is performing
a configuration transition that requires reversing the propeller. This is due to the fact
that we use commonly available electronic speed controllers and brushless motors which use
back-EMF to sense the speed of the motor. The use of back-EMF to sense motor speed
results in significantly degraded performance when changing directions, meaning that such
motors are typically restricted to spin in only one direction. Although this property can
affect the performance of the proposed vehicle when changing between configurations, once
the propellers have reversed direction they can continue to operate without any significant
change in performance. Thus, in practice we restrict the thrust forces of propellers spinning
in the forward direction and reverse direction to be in [0, fmax] and [fmin, 0] respectively, and
only allow the propellers to change direction when changing between configurations.

Vehicle Agility

We now examine the effects of the bounds described in Section 4.3 on the experimental
vehicle with thrust limits fmin and fmax. For notational convenience, we define W ∈ R4×4

as a matrix with each column defined by cfi , cxi , cyi , and czi respectively. Then, the bounds

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 51

Figure 4.4: Magnitude of thrust and torque produced by an 8038 propeller spinning in both
the forward and reverse directions. A load cell capable of measuring forces and torques was
used in conjunction with an optical tachometer to collect the data. The propeller produces
significantly more thrust but produces roughly the same magnitude torque when spinning
in the forward direction compared to the reverse direction for a given speed.

defined in (4.12) can be rewritten as:

W

[
fΣ

τB

]
� 0 (4.24)

where � denotes an element-wise inequality, and 0 denotes a vector of zeros.
Then, the matrix Wu for the experimental vehicle in the unfolded configuration is com-

puted to be the following, where the first column has units of meters and the other columns
are unitless.

Wu =


0.0144 −0.0421 −0.0252 −1.304
0.0144 −0.0421 0.0252 1.304
0.0144 0.0421 0.0252 −1.304
0.0144 0.0421 −0.0252 1.304

 (4.25)

Similarly, the matrix W2f for the experimental vehicle in the two-arms-folded configura-

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 52

tion is computed to be:

W2f =


0.0369 0.08 0.0225 0.0059
0.0237 0.345 −0.289 1.26
0.0369 −0.08 −0.0225 0.0059
0.0237 −0.345 0.289 1.26

 (4.26)

The individual thrust limits of each propeller can be written in terms of fΣ and τB by
utilizing the inverse of the mapping matrix M introduced in (2.4):[

I
−I

]
M−1

[
fΣ

τB

]
�
[

1fmin

−1fmax

]
(4.27)

where I the 4× 4 identity matrix, and 1 is vector of ones of length four.
In order to compare the agility of the experimental vehicle to a conventional quadcopter,

we examine how the set of feasible values of fΣ and τB is reduced when imposing the bounds
given in (4.24) (i.e. those that prevent the arms from folding or unfolding). Note that both
the experimental vehicle and a conventional quadcopter must satisfy the bounds on fΣ and
τB given by (4.27) (i.e. those that ensure fpi ∈ [fmin, fmax]), but that the experimental vehicle
must additionally satisfy the bounds that prevent the arms from folding or unfolding.

The reduction in agility of the experimental vehicle when τx = τy = 0 is shown in
Figure 4.5, where we observe how the set of feasible yaw torques τz and total thrusts fΣ is
reduced in comparison to a conventional quadcopter. As shown in the figure, the bounds
that prevent the arms from folding primarily result in a reduction in the range of feasible
yaw torques. Specifically, the maximum yaw torque the experimental vehicle can produce
at hover (i.e. when fΣ = mΣg and τx = τy = 0) is reduced by 36% when compared to a
conventional quadcopter. We note that this is a significant improvement from our previous
work [38], where the maximum yaw torque was reduced by roughly 75% when compared to
a conventional quadcopter due to the use of springs to fold the arms rather than reverse
thrust as we use in this work.

A similar analysis of the maximum magnitude roll and pitch torques the vehicle can
produce at hover shows them to be no less than those of a conventional quadcopter, indicating
that the bounds that prevent the arms from folding given in (4.24) are actually less restrictive
than those on each of the individual thrust forces given in (4.27). Finally, we find that the
minimum and maximum total thrust forces are also no less than those of a conventional
quadcopter, which is also an improved result from our previous work [38] where we found
that the minimum total thrust force was 70% of the thrust force required to hover (again due
to the use of springs to fold the arms). Thus, this analysis implies that the only significant
tradeoff between the proposed vehicle design and a conventional quadcopter (in terms of the
control authority of the vehicle) is the reduction of the maximum yaw torque the vehicle can
produce.

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 53

Figure 4.5: Range of feasible total thrusts fΣ and yaw torques τz for the experimental vehicle
in the unfolded configuration with zero roll and pitch torques τx = τy = 0. The dotted black
line denotes the value of fΣ at hover. The blue set A represents the feasible inputs when only
the constraints on the minimum and maximum thrusts of each propeller fmin and fmax are
considered. The orange set B represents the feasible inputs for a conventional quadcopter,
i.e. with fmin = 0 rather than fmin < 0. Finally, the green set C represents the feasible inputs
when the constraints that prevent the arms from folding are imposed, primarily reducing the
range of feasible yaw torques. Note that C ⊂ B ⊂ A.

4.5 Experimental Results

In this section, we demonstrate how the ability of the proposed vehicle to fold and unfold
each arm enables it to perform a number of tasks which would be difficult or impossible to
perform using a conventional quadcopter. We first show how the ability to fold two arms
of the vehicle enables the vehicle to fly horizontally through narrow tunnels and perform
simple aerial grasping, and then demonstrate how all four arms of the vehicle can be folded
to perform perching and more aggressive vertical flight through narrow gaps.2

Horizontal flight through a narrow tunnel

We first demonstrate how the proposed vehicle can be used to fly in confined spaces which
would normally be inaccessible to a conventional quadcopter of similar size. The vehicle

2Videos of each of the experiments discussed in this section can be viewed in the attached video or at
https://youtu.be/xEg8GXlb82g

https://youtu.be/xEg8GXlb82g

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 54

Figure 4.6: Composite image of the vehicle transitioning from the unfolded to two-arms-
folded configuration (left), flying through a narrow tunnel, and transitioning back to the
unfolded configuration (right).

was flown through a tunnel with a cross section that measures 43 cm by 43 cm, as shown
in Figure 4.1b. These dimensions were chosen such that the vehicle could not traverse the
tunnel in the unfolded configuration even with perfect trajectory tracking, as the minimum
width of the vehicle in the unfolded configuration is 43 cm. However, the minimum width of
the vehicle in the two-arms-folded configuration is 24 cm, allowing it to pass.

To perform the maneuver, the vehicle first transitions from the unfolded configuration to
two-arms-folded configuration, then flies through the tunnel, and finally transitions back to
the unfolded configuration as shown in Figure 4.6. The yaw angle of the vehicle was chosen
to maximize the distance of the vehicle from the walls of the tunnel when flying through its
center.

Grasping

Next, we show how the two-arms-folded configuration can be used to perform a simple
grasping task, as shown in Figure 4.7. In this experiment a box with a mass of 83 g that
measures 9 cm × 15 cm × 25 cm in height is used. The box was specifically chosen to be
9 cm in width in order to allow for the box to be grasped without significantly changing
the geometry of the two-arms-folded configuration, as the distance between the legs of two
opposing folded arms is approximately 9 cm. Note that because the total mass of the vehicle
mΣ increases when holding the box, each of the bounds given in (4.22) that govern the
ability of the vehicle to hover in the two-arms-folded configuration become more restrictive,
significantly limiting the maximum mass of a box that can be carried.

The experiment was conducted as follows: The vehicle was first commanded to land on

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 55

Figure 4.7: Composite image of the vehicle grasping a box (left), flying it to a new location,
and dropping the box by returning to the unfolded configuration (right).

top of the box, which was constrained such that it could not rotate in the yaw direction. After
landing, all four propellers were disabled, allowing two of the arms of the vehicle to fall into
grasping position. Next, the two arms used to grasp the box were commanded to produce a
thrust of −2 N for one second to allow the arms to settle into a firm grasping position, after
which time the two unfolded arms were commanded to produce a small thrust of 1 N for
one second such that they fully unfolded before takeoff. After this grasping procedure was
completed, the vehicle was commanded to takeoff and fly to the desired drop-off location
using the two-arms-folded configuration controller, which was modified to account for the
change in location of the center of mass of the vehicle as discussed in Section 4.3. After
flying to the drop-off location, the vehicle was commanded to transition back to the unfolded
configuration, resulting the the box being released at the desired location.

Wire perching

The vehicle is also capable of perching on wires in the four-arms-folded configuration, as
shown in Figure 4.1d. To perform this maneuver, the vehicle simply aligns itself with the
wire and lands on top of it, turning off all four motors when the maneuver is complete. The
body of the experimental vehicle includes a notch that runs the length of the central body
the vehicle, which helps align the vehicle with the wire when perching. Because only the

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 56

Figure 4.8: Image sequence of the vehicle transitioning from the unfolded to the four-arms-
folded configuration and back in order to traverse a narrow gap. Data associated with this
experiment is shown in Figure 4.9.

central body of the vehicle is supported by the wire, the four arms fold downward. This
shifts the center of mass of the vehicle below the wire, which allows the vehicle to perch on
the wire in a stable configuration. For the experimental vehicle, the center of mass is shifted
4 cm downward by folding the arms, resulting in the center of mass of the vehicle being 2 cm
below where the wire contacts the vehicle.

Vertical flight through a narrow gap

Finally, we demonstrate capability of the vehicle to fold all four arms during flight, allowing
for passage through narrow gaps in projectile motion. The maneuver is inspired in part by
how birds fold their wings when passing through narrow gaps, as shown in [65], and mirrors
our previous work [38], where we demonstrated a similar capability using springs to fold
the arms rather than reverse thrust forces. Here we only show the vehicle traversing a gap
vertically, as the traversal of gaps in the horizontal direction can be accomplished using the
two-arms folded method demonstrated in Section 4.5. The gap measures 43 cm by 43 cm,
and the experimental vehicle measures 27 cm by 35 cm in the four-arms-folded configuration.

Figure 4.8 shows images of the gap traversal maneuver, and Figure 4.9 graphs the tra-
jectory of the vehicle during the maneuver, which consists of the following stages. First, the
vehicle aligns itself with the gap while hovering above it. Once aligned, the vehicle begins
to accelerate upward from time t0 = 0.2 s to time t1 = 0.46 s. After completing this upward
trajectory, a constant thrust command of −1 N is sent to each propeller at time t1. At time
t2 = 0.84 s the arms finish the transition to the folded configuration, and the four-arms-folded
attitude controller is used to stabilize the vehicle, where the desired attitude is chosen such
that zC is in the vertical direction. Next, at time t3 = 0.96 s, a constant thrust command
of 1 N is sent to each propeller in order to unfold the arms. The vehicle traverses the gap
(located at 3.3 m in this experiment) at approximately this time. Then, at time t4 = 1.21 s,
the arms finish unfolding as evidenced by a sharp increase in the acceleration of the vehicle
in the zC direction. At this time the unfolded configuration controller is once again enabled,

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 57

Figure 4.9: Trajectory of the vehicle while passing downward through a narrow gap in the
four-arms-folded configuration. The position and velocity of the vehicle are given in the
vertical zE direction as measured by the motion capture system, and the proper acceleration
is given in the zC direction as measured by the onboard accelerometer. The vehicle starts
accelerating upward at time t0, and commands each propeller to produce a constant negative
thrust at time t1, initiating the transition to the four-arms-folded configuration. At time t2
the arms finish folding, and the four-arms-folded controller is used to stabilize the attitude
of the vehicle. Next, at time t3, a constant positive thrust command is sent to each motor to
initiate the transition back to the unfolded configuration, resulting in the vehicle returning
to the unfolded configuration at time t4. Finally, the vehicle is commanded to accelerate
upward to reduce its downward velocity until the vehicle comes to rest at time t5.

CHAPTER 4. IMPROVED OPERATIONAL CAPABILITIES VIA AERIAL
MORPHING 58

and the vehicle is commanded to produce a large vertical acceleration until the vertical speed
of the vehicle is reduced to zero, which occurs at time t5 = 1.51 s.

Note that although using larger constant thrust commands than 1 N to fold and unfold
the arms would result in the arms folding/unfolding more quickly, in practice we have found
it preferable to command smaller constant thrust values. This is due to the fact that the
arms may not fold at exactly the same time (e.g. due to friction), and thus large constant
thrusts may result in large torques being exerted on the vehicle, leading to potentially large
attitude errors once the transition is completed. The reduction of attitude errors in the
four-arms-folded configuration is crucial because it ensures that the thrust direction of the
vehicle will be in the opposite direction of its velocity after transitioning back to the unfolded
configuration, allowing for the vehicle to quickly reduce its speed.

4.6 Conclusion

In this chapter we have presented a novel quadcopter design that differs from a conventional
quadcopter in the use of passive hinges which allow each of the four arms to rotate freely
between unfolded and folded configurations. The vehicle was designed to be nearly identical
to a conventional quadcopter aside from the presence of the four passive hinges, which are
lightweight and thus do not significantly affect the power consumption of the vehicle. Al-
though these additional unactuated degrees of freedom require stricter bounds on the thrust
forces produced by each propeller, these additional bounds were shown to not significantly
affect the agility of the vehicle when flying in the unfolded configuration, aside from a reduced
ability to produce yaw torques. Additionally, a method for easily synthesizing controllers for
the different configurations of the vehicle was presented and used to control the attitude of
the vehicle in both the two- and four-arms-folded configurations.

The design of the vehicle was also analyzed based upon the ability of the vehicle to hover
in the two-arms-folded configuration. Specifically, it was shown that the angle of the arms
relative to the central body is bounded from below by a function of the characteristics of the
propellers and the mass and size of the vehicle. This lower bound, however, is structured
such that it becomes less strict as the power consumption of the vehicle in the unfolded
configuration is reduced, meaning that no tradeoff exists between vehicle power consumption
and arm angle. A simple characterization of a conventional quadcopter propeller was also
performed, showing that although significantly less thrust is produced by the propeller when
spinning in reverse, such propellers can produce enough reverse thrust to enable the vehicle
to be controlled in the two-arms-folded configuration with a reasonably small arm angle.

Finally, the viability of the design was demonstrated by constructing an experimental
vehicle using commonly available quadcopter components (e.g. standard propellers, motors,
etc.), which was shown to be capable of performing a number of tasks that a conventional
quadcopter could not perform.

59

Chapter 5

Computationally Efficient Trajectory
Generation in Known Environments

In the previous two chapters we have examined various novel quadcopter designs that enable
a wider range of tasks to be achieved than what a conventional quadcopter could achieve.
Similarly, in the following two chapters we investigate how novel path planning algorithms
can be used to reduce the computational resources required to fly a quadcopter autonomously,
and argue that this enables lower cost/power computational hardware to be used than what
is used on conventional autonomous quadcopters.

Specifically, this chapter presents a continuous-time collision detection algorithm for
quickly detecting whether certain polynomial trajectories in time intersect with convex obsta-
cles. The algorithm is used in conjunction with an existing quadcopter trajectory generation
method to achieve rapid, obstacle-aware motion planning in environments with both static
convex obstacles and dynamic convex obstacles whose boundaries do not rotate. In general,
this problem is difficult because the presence of convex obstacles makes the feasible space
of trajectories nonconvex. The performance of the algorithm is benchmarked using Monte
Carlo simulations, and experimental results are presented that demonstrate the use of the
method to plan collision-free quadcopter trajectories in milliseconds in environments with
both static and dynamic obstacles.

Note that the material presented in this chapter is based on the following previously
published work, differing primarily in the notation used to describe the dynamics of the
vehicle.

• Nathan Bucki and Mark W Mueller. “Rapid Collision Detection for Multicopter Tra-
jectories”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2019

CHAPTER 5. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
KNOWN ENVIRONMENTS 60

5.1 Introduction

A key enabler of the use of autonomous systems in real-world situations is a fast method
for generating state and input feasible trajectories between desired states. This problem is
know as the motion planning problem, and is a well researched area that includes numerous
methods for the generation of such trajectories. In particular, sampling-based methods such
as rapidly exploring random trees (RRT) [67], probabilistic roadmaps (PRM) [68], and fast
marching trees (FMT) [69], have been used with great success to construct collision-free paths
between desired states. Such methods are typically performed by sampling the state space of
the system and attempting to connect feasible sampled nodes with simple trajectories that
do not collide with obstacles. Performing collision detection on both the sampled nodes and
the trajectories that connect them is often considered the most computationally expensive
step in the motion planning process, and will be the focus of this chapter.

Previous work focusing on the reduction of collision detection time includes [70], which
presents an algorithm that involves using distance information from previously sampled nodes
to avoid performing explicit node-obstacle collision detection when possible. In [71] this
idea is adapted to reduce collision detection time for quadcopter trajectories by computing
overlapping collision-free spheres around the trajectory based on the maximum velocity of
the vehicle and distance to the nearest obstacle at each sample point.

Rather than generating a number of quadcopter trajectories and then checking each one
for collisions, the authors of [72] first compute a series of overlapping, obstacle-free polyhe-
drons and then generate a series of trajectory segments that remain inside the polyhedrons.
In [73], the authors take a similar approach by using an octree-based representation of the
environment in order to enforce corridor constraints on each trajectory segment generated.
A third approach to collision avoidance for aggressive flight is explored in [74], where a dense
set of alternative trajectories to some desired trajectory are precomputed, allowing for one
of the alternative trajectories to be chosen if a collision is predicted along the desired trajec-
tory. In this case, a collision is determined by comparing the distance of each point along the
discretized candidate trajectory to the points in a point cloud generated by a laser scanner.

In contrast to methods concerned only with planning in static environments, the authors
of [75] leverage sequential convex programming to compute trajectories for multiple quad-
copters that do not collide, allowing for dynamic formation changes. In [76] a method for
dynamic obstacle collision avoidance is presented that models the obstacles as ellipsoids and
incorporates them as nonconvex constraints in a model predictive controller.

In this chapter we are interested in reducing the computational time required to find fea-
sible trajectories for quadcopters in order to enable high-speed flight in cluttered, unknown
environments (e.g. when navigating a forest). Fast trajectory generation is a requirement
in these scenarios due to the limited range of onboard sensors and limited onboard com-
putational power. For example, obstacles can often be occluded or unexpectedly change
position, requiring an immediate, agile response to avoid a collision if flying at high speeds.
Furthermore, due to the constrained onboard computational power of aerial vehicles, efficient
algorithms are often required in order to achieve acceptable performance.

CHAPTER 5. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
KNOWN ENVIRONMENTS 61

To this end, we propose a computationally efficient method for quickly evaluating whether
a candidate trajectory collides with obstacles in the environment. We limit ourselves to eval-
uating quadcopter trajectories similar to those described in [77], which describe the vehicle’s
position as a fifth order polynomial in time. These trajectories result in the minimum av-
erage jerk over the duration of the trajectory, and are particularly useful because they can
be generated and checked for input feasibility with little computation. Unlike other col-
lision detection methods that discretize the trajectory in time and perform a number of
static collision checks at each sample point (e.g. as detailed in [78]), our method leverages a
continuous-time representation of the trajectory to rapidly perform continuous-time collision
detection.

5.2 System model

We follow [77] in modeling the quadcopter as a six degree of freedom rigid body with acceler-
ation d̈EBE ∈ R3 (written in the inertial coordinate frame) and orientation REB, where REB

represents the rotation matrix that rotates vectors in the body-fixed frame to the inertial
frame. In contrast to the quadcopter dynamics presented in Chapter 2, we assume that the
angular velocity of the vehicle ωBBE is controlled by a high-bandwidth low-level controller
such that the angular velocity converges very rapidly to a desired value, and may thus be
treated as an input to the system for path planning purposes. Note that the controller pre-
sented in Section 2.4 can still be used to track such reference trajectories with only minor
modifications needed to account for the desired feed-forward angular velocity associated with
the reference trajectory.

The translational dynamics and simplified attitude dynamics of the quadcopter are then

d̈EBE = REBzBBf + gE, ṘEB = REBS
(
ωBBE

)
(5.1)

where S
(
ωBBE

)
is the skew-symmetric form of the angular velocity vector ωBBE and f is the

mass-normalized thrust of the quadcopter.
Using this model, it can be shown that kinematically feasible polynomial trajectories in

time can be generated using the differential flatness property of quadcopter dynamics [79].

Specifically, we plan trajectories by defining the components of the jerk
...
d
E
BE(t) as second

order polynomials in time between time t = 0 and t = T . As described in [77], this results
in trajectories that minimize the average jerk over the trajectory. The thrust f and angular
velocity ωBBE are then written as a function of d̈EBE and

...
d
E
BE as follows.

f = mB||d̈EBE − gE||2,

ω2

ω1

0

 =
1

f

1 0 0
0 1 0
0 0 0

RBE
...
d
E
BE (5.2)

where ω1 and ω2 are the components of angular velocity perpendicular to the thrust direction
(i.e. the roll and pitch rates). Note that the angular velocity in the zBB direction does not

CHAPTER 5. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
KNOWN ENVIRONMENTS 62

affect the translational motion of the vehicle, and is taken to be ω3 = 0 for the rest of the
chapter.

The position and velocity of the quadcopter are defined as dEBE and ḋEBE respectively,
and are both in R3 and written in the inertial frame. Let dEBE(0), ḋEBE(0), and d̈EBE(0) be the
position, velocity, and acceleration of the vehicle at the start of the trajectory. Because the
minimum average jerk trajectory is achieved when each component of the jerk is a second
order polynomial in time, the trajectories of the states of the system follow asdEBE(t)

ḋEBE(t)

d̈EBE(t)

 =

 α
120
t5 + β

24
t4 + γ

6
t3 +

d̈EBE(0)

2
t2 + ḋEBE(0)t+ dEBE(0)

α
24
t4 + β

6
t3 + γ

2
t2 + d̈EBE(0)t+ ḋEBE(0)

α
6
t3 + β

2
t2 + γt+ d̈EBE(0)

 (5.3)

where α, β, γ ∈ R3 are linear functions of dEBE(T), ḋEBE(T), and d̈EBE(T).
A method for quickly checking whether a given trajectory satisfies bounds on the mini-

mum and maximum thrust f and the magnitude of the angular velocity ωBBE is given in [77],
to which we refer the reader for further discussion.

5.3 Algorithm for Static Obstacle Collision Detection

In this section we describe the collision detection algorithm. All obstacles are assumed to
be convex; nonconvex obstacles may be approximated by defining them as a union of convex
obstacles. In general, the presence of convex obstacles results in the feasible space being
nonconvex, making the trajectory generation and collision detection problem difficult to
perform using traditional optimization methods.

We first review a method used to check whether a polynomial trajectory lies on one side
of a plane, which is defined by a point p and unit normal n (both written in the inertial
frame). The distance of the trajectory from the plane can be computed as

d(t) = nT (dEBE(t)− p) (5.4)

Furthermore, the critical points of d(t) can be computed by differentiating with respect
to t and finding the roots of the resulting equation:

ḋ(t) = nT ḋEBE(t) = c4t
4 + c3t

3 + c2t
2 + c1t+ c0 (5.5)

where
c4 = 1

24
nTα, c3 = 1

6
nTβ, c2 = 1

2
nTγ

c1 = nT d̈EBE(0), c0 = nT ḋEBE(0)
(5.6)

The trajectory dEBE(t) is defined only between t = 0 and t = T , so the critical points of
d(t) occur between and include the start and end of the candidate trajectory. The set of
critical points Tcrit is then defined as

Tcrit = {ti : ti ∈ [0, T], ḋ(ti) = 0} ∪ {0, T} (5.7)

CHAPTER 5. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
KNOWN ENVIRONMENTS 63

If the distance d(t) at each critical point is positive, this indicates that dEBE(t) does not
cross the plane. Because ḋ(t) is a fourth order polynomial in time, its roots can be found in
closed form, meaning that Tcrit can be found with very little computation.

We now extend this method to detect collisions with convex obstacles. The given convex
obstacle O and polynomial trajectory dEBE(t) are required to have the following two proper-
ties. First, it must be possible to check whether a specific point dEBE(t0) is inside O. Second,
assuming dEBE(t0) /∈ O, it must be possible to define a separating plane between dEBE(t0) and
O (defined with point p unit normal n). Thus, if dEBE(t) is found to not cross the separating
plane, it is guaranteed to not collide with O.

Algorithm 1 leverages this property to verify whether an individual segment of a given
trajectory is in collision with a given obstacle. The algorithm begins by checking whether the
end points of the trajectory dEBE(0) and dEBE(T) are inside the obstacle (lines 4-5), followed
by a call to CheckSection, which returns whether the given section is feasible, infeasible,
or whether the feasibility of the section cannot be determined (line 6). For each call to
CheckSection(ts, tf), a time tsplit between ts and tf is chosen which divides the trajectory
in two. We choose tsplit to be the average of ts and tf , as it will evenly divide the trajectory
into two sub-trajectories in time (line 8).

For each section checked recursively by CheckSection, dEBE(tsplit) is first checked for
feasibility (line 9), and then the minimum resolution of the section tmin is checked (line 11).
The parameter tmin serves to terminate the algorithm early in order to prevent excessive time
being spent checking any particular candidate trajectory, and limits the recursive depth of
the algorithm. This end condition can be reached in the case where the candidate trajectory
passes sufficiently close to the obstacle, requiring the trajectory to be split into a large
number of sub-trajectories to be checked.

Next, the unit normal n and location p of a separating plane are found (line 13). Although
there are many possible ways to find a separating plane, in our implementation we choose p
such that it is the minimum distance point to dEBE(tsplit) located in O. The unit normal of
the plane n is then chosen such that the resulting plane lies on the obstacle boundary at p
and points from p to dEBE(tsplit). The times Tcrit at which the critical points of the distance
of the trajectory from the resulting separating plane occur are then computed by solving the
corresponding fourth order polynomial given by (5.5) (line 15). Once Tcrit is computed, the
two sections of the trajectory occurring before and after tsplit are each checked for feasibility.

Let T (↓)
crit be the elements of Tcrit in (ts, tsplit) and T (↑)

crit be the elements of Tcrit in (tsplit, tf).
The section of the trajectory between tsplit and tf is first checked for feasibility by iterating

forward in time over T (↑)
crit and checking whether each critical point of d(t) lies on the feasible

side of the separating plane (lines 17-18). If a critical point is found to lie on the obstacle
side of the plane, the section between the previous critical point (already determined to be
on the feasible side of the plane) and tf cannot be guaranteed to be feasible and is recursively
checked with CheckSection (line 19). Finally, the section of the trajectory between ts and

tsplit is checked for feasibility in a similar manner by iterating backwards in time over T (↓)
crit

(lines 26-28). A graphical representation of Algorithm 1 is shown in Figure 6.2.

CHAPTER 5. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
KNOWN ENVIRONMENTS 64

Note that Algorithm 1 treats dEBE(t) as the trajectory of a point. In order to detect
collisions between O and a real quadcopter, we define a sphere of radius rq that contains
the vehicle, and enlarge O by rq in each direction. Additionally, because polynomials of
order greater than four do not have closed form solutions except in special cases, greater
computation time would be required to find the critical points of any higher order position
trajectories (e.g. as used in [9]).

Algorithm 1 Trajectory Collision Detection

1: input: Candidate trajectory parameters α, β, γ, initial conditions
dEBE(0), ḋEBE(0) d̈EBE(0), minimum checking time tmin, convex obstacle O

2: output: feasible, infeasible, or indeterminable
3: function CollisionCheck
4: if dEBE(0) or dEBE(T) inside obstacle then
5: return infeasible
6: return CheckSection(0, T)

7: function CheckSection(ts, tf)

8: tsplit ← ts+tf
2

9: if dEBE(tsplit) inside obstacle then
10: return infeasible
11: else if tf − ts < tmin then
12: return indeterminable
13: Find plane separating dEBE(tsplit) and obstacle
14: d(t)← distance of dEBE(t) from separating plane

15: T (↑)
crit ← critical points of d(t) from tsplit to tf

16: Sort T (↑)
crit ascending

17: for ti in T (↑)
crit , skipping tsplit do

18: if dEBE(ti) is on obstacle side of plane then
19: result ← CheckSection(ti−1, tf)
20: if result is feasible then
21: break
22: else
23: return result
24: T (↓)

crit ← critical points of d(t) from tsplit to ts
25: Sort T (↓)

crit descending

26: for ti in T (↓)
crit , skipping tsplit do

27: if dEBE(ti) is on obstacle side of plane then
28: return CheckSection(ts, ti−1)

29: return feasible

CHAPTER 5. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
KNOWN ENVIRONMENTS 65

Figure 5.1: A graphical depiction of Algorithm 1. Three sequential calls to CheckSection
(as defined in Algorithm 1) are shown. The red circle represents the convex obstacle and the
solid black line represents the trajectory in time. In the first call to CheckSection (shown
in the left panel), two critical points (drawn as crosses) of the distance to the separating
plane (drawn as a dashed line) are found. The trajectory is found to cross the separating
plane between tf and the critical points occurring after tsplit, prompting a recursive call
to CheckSection. As shown in the middle panel, this sub-trajectory is found to not
collide with the obstacle because it lies entirely on the opposite side of the newly computed
separating plane. Next, the original trajectory (left) is again found to cross the separating
plane between ts and tsplit, leading to a second recursive call to CheckSection. As shown
in the right panel, this sub-trajectory is also found to lie entirely on the opposite side of the
newly computed separating plane, proving that the entire trajectory does not collide with
the obstacle.

5.4 Performance Measures

In this section we provide two simulations used to benchmark the performance of the pro-
posed algorithm.1 The algorithm was implemented in C++ and compiled with GCC version
5.4.0 with the highest speed optimization settings. All simulations were ran as a single thread
on a laptop with a 1.80GHz Intel i7-8550U processor.

Monte Carlo simulation with random obstacles

First, a Monte Carlo simulation was conducted in order to characterize the computational
time required to perform collision detection on a single candidate trajectory. The methods
of [77] are used to generate the candidate trajectories and check whether the generated

1An implementation can be found at https://github.com/nlbucki/

RapidQuadcopterCollisionDetection

https://github.com/nlbucki/RapidQuadcopterCollisionDetection
https://github.com/nlbucki/RapidQuadcopterCollisionDetection

CHAPTER 5. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
KNOWN ENVIRONMENTS 66

Table 5.1: Average collision detection time.

Feasible Infeasible Indeterminable
Fraction of trajectories 95.99% 4.01% < 0.01%
Collision detection time 1.44µs 1.36 µs 11.59 µs

trajectory satisfies some given input bounds. Any trajectory requiring a mass-normalized
thrust that is not between 5 m s−2 and 30 m s−2 or that requires an angular velocity of greater
than 20 rad s−1 is discarded.

Candidate trajectories are generated with a fixed initial position of dEBE(0) = (0, 0, 0).
The final position, initial and final velocity, and initial and final acceleration along each
axis are generated from uniform distributions over the intervals (−4 m, 4 m), (−4 m s−1,
4 m s−1), and (−4 m s−2, 4 m s−2) respectively. The length of time of the trajectory is sampled
uniformly at random between 0.2 s and 4 s. A sphere with radius sampled uniformly at
random on (0.1 m, 1.5 m) and positions sampled uniformly at random on (−4 m, 4 m) along
each axis is used as an obstacle. The minimum collision detection time per section tmin is
chosen to be 2 ms.

For 109 such trials, the average time required to detect collisions was 1.44µs, and of
the candidate trajectories, 95.99% did not collide with the obstacle. Table 5.1 shows the
computation time required depending on whether the trajectory was found to be feasible,
infeasible, or of indeterminable feasibility.

Monte Carlo simulation with constant obstacles

A second Monte Carlo simulation involving generating collision free trajectories that bring
the vehicle to rest was also conducted. This scenario is of interest in the case where, for ex-
ample, the vehicle must perform an emergency stopping maneuver (e.g. when an unexpected
obstacle appears in the path of the vehicle while flying at high speed). The simulation is
run in batches of 100 candidate trajectories, where each candidate trajectory starts from the
same initial state and ends at rest at a position sampled uniformly at random along each
axis on (−2.5 m, 2.5 m). For each batch, the initial position of the vehicle is constrained to
be (−2.5 m, 0 m, 0 m), the initial velocity and acceleration in the x-direction are sampled
uniformly at random on (2 m s−1, 8 m s−1) and 4 m s−2, 10 m s−2) respectively, and the initial
velocity and acceleration in the y- and z-directions are sampled uniformly at random on
(−2 m s−1, 2 m s−1) and (−2 m s−2, 2 m s−2) respectively. The length of time of the candi-
date trajectories is sampled uniformly at random between 0.5 s and 2 s. The positions and
orientations of the obstacles, represented as five long rectangular prisms, are fixed as shown
in Figure 5.2, which additionally shows the candidate trajectories of a single batch.

One million batches were simulated. The average time required to find the first collision
free trajectory was 14.6 µs. On average, each trajectory required 0.1 µs to generate, 0.5 µs to
check for satisfaction of constraints on the total thrust and angular velocity, and 7.7 µs to

CHAPTER 5. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
KNOWN ENVIRONMENTS 67

x−2
−1

0
1

2

y −2
−1

0
1

2

z

−2

−1

0

1

2

No Collision

Collision

Figure 5.2: Visualization of obstacle distribution and stopping trajectories. Obstacles are
represented by blue rectangular prisms. Solid green lines represent the collision free trajec-
tories from a single batch of 100 trajectories, and dotted red lines represent the trajectories
that would collide with an obstacle. On average, the first feasible stopping trajectory was
found in 14.6 µs.

detect any collisions with the five obstacles. For each batch, an average of 60.2% of generated
trajectories were collision free.

5.5 Dynamic Obstacle Collision Detection

In the previous section we showed that our algorithm is capable of detecting collisions be-
tween given quadcopter trajectories and static convex obstacles in an environment. This
method is easily extended to detect collisions with dynamic obstacles whose boundaries do
not rotate, and whose position trajectories are described by fifth order or below polyno-
mial in time. Example applications of this method include detecting collisions between two
quadcopters with different trajectories or between a projectile and a moving quadcopter.

Let xO(t) be the predicted trajectory of the center of a given obstacle. The relative
position of the obstacle and the quadcopter at any time t is then

x̃(t) = dEBE(t)− xO(t) (5.8)

where each component of x̃(t) will a polynomial in time if each component of both dEBE(t)
and xO(t) are also polynomials in time.

CHAPTER 5. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
KNOWN ENVIRONMENTS 68

Figure 5.3: A quadcopter avoiding an unexpected surface (top) and a thrown projectile
(bottom). The images move forward in time from left to right. The original desired trajectory
of the vehicle is shown with a solid blue line, and the position of the surface and predicted
trajectory of the projectile are both shown by a dashed red line. In the first frame a collision
is predicted to occur if the quadcopter remains on its current trajectory. In the second
frame, a large number of alternative trajectories are generated (shown as solid cyan lines).
Alternative trajectories that do not satisfy state and input constraints are discarded, and
the minimum average jerk trajectory that satisfies all constraints is chosen (shown as a
dotted green line). In the experiments shown, 14,610 and 2,371 candidate trajectories were
generated and evaluated in 15 ms to avoid the surface and projectile respectively. In the third
frame, the avoidance trajectory is tracked while continuing to detect predicted collisions
with the obstacle and replanned if necessary. Finally, the fourth frame shows the vehicle
successfully coming to rest without colliding with the surface (top), and generating and
tracking a trajectory that brings the vehicle to the original desired end position (bottom).

Recall that we model the quadcopter as a sphere with radius rq. A collision between
the quadcopter and the dynamic obstacle occurs if x̃(t) intersects with an obstacle centered
at the origin of the same size as the dynamic obstacle but enlarged by rq in each direction.
Because the boundary of the obstacle is required to not rotate, the same methods described in
Section 5.3 may be used to detect collisions between x̃(t) and the enlarged obstacle centered
at the origin. Obstacles with boundaries that do rotate may be straight-forwardly encoded
by enclosing them convex shapes with boundaries that do not rotate (e.g. spheres) at the
penalty of introducing conservatism to the collision detection.

5.6 Experimental Results

This section presents experimental results where the proposed algorithm is used to enable a
quadcopter to avoid unexpected static and dynamic obstacles. For the static obstacle case,
we interrupt the motion of the quadcopter while following a trajectory by placing a surface

CHAPTER 5. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
KNOWN ENVIRONMENTS 69

in the path of the vehicle, forcing it to rapidly plan a new trajectory to avoid the collision
and bring the vehicle to rest. For the dynamic obstacle case, we throw a projectile at the
vehicle while it is following a trajectory to a goal position, again forcing it to rapidly plan
a new trajectory to avoid the projectile and then continue to the original goal position. All
experiments can be viewed at https://youtu.be/cpskvQPhpoY.

The quadcopter has a mass of 685 g, and receives thrust and angular velocity commands
at 50 Hz via radio from an offboard laptop. Collision detection and trajectory generation
is performed using the same laptop as used for benchmarking in Section 5.4. The position
and attitude of the quadcopter and obstacles are measured using a motion capture system
at 200 Hz.

During each controller time step, we check whether any collisions are predicted to occur
between the quadcopter and the obstacle used for each experiment. If a collision is detected,
a new trajectory is generated that is not predicted to collide with the obstacle and ends at
rest with zero velocity and zero acceleration. We sample candidate end positions for the
avoidance trajectory uniformly at random in a 3.2 m × 5.2 m × 1 m rectangular space and
sample durations of the avoidance trajectory uniformly at random from 0.5 s to 2 s. While
tracking the avoidance trajectory, we continue to check for predicted collisions and generate
a new avoidance trajectory if necessary.

When searching for feasible trajectories during both experiments, we generate and evalu-
ate candidate trajectories for 15 ms, and at the end of the allocated time choose the trajectory
with the minimum average jerk that satisfies all state and input constraints. We choose the
trajectory with the minimum average jerk in order to favor less aggressive trajectories. When
evaluating each candidate trajectory, we first compute the average jerk of the trajectory and
reject it if it has a higher average jerk than any previously found state and input feasible
trajectory. Next, we use the methods of [77] to check that the total mass-normalized thrust
f remains between 5 m s−2 and 30 m s−2 and that the maximum angular velocity remains
bellow 20 rad s−1, as these are the physical limits of the experimental vehicle. We then check
that the candidate trajectory stays within a box of 3.4 m × 5.4 m × 3.1 m to prevent the
vehicle from flying into the ceiling, floor, or walls. Finally, we check that the candidate
trajectory does not collide with any obstacles using Algorithm 1 with tmin = 0.002 s.

Static obstacle avoidance

For the static obstacle avoidance experiment, we define the static obstacle as a rectangular
prism measuring 1.64 m × 1.43 m × 0.78 m, which includes both the increase in size in each
direction necessary to account for the true size of the quadcopter and a small buffer to
account for trajectory tracking and estimation errors. The quadcopter tracks two predefined
trajectories that result in a roughly circular motion with an average speed of 5 m s−1, and
checks these trajectories for collisions with the rectangular prism at each controller time step.
The obstacle is then moved by hand in front of the vehicle about 0.5 s before the vehicle would
pass, causing a collision to be predicted and an avoidance trajectory to be generated that
brings the vehicle to rest without colliding with the obstacle. Figure 5.3 shows a sequence

https://youtu.be/cpskvQPhpoY

CHAPTER 5. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
KNOWN ENVIRONMENTS 70

of images from the experiment. For the experiment shown in Figure 5.3, 14,610 candidate
avoidance trajectories were evaluated in the allocated 15 ms after first predicting a collision
with the obstacle (recall that the controller runs with a 20 ms period).

Dynamic obstacle avoidance

For the dynamic obstacle avoidance experiment, we throw a projectile at the vehicle while
it is performing a rest to rest maneuver from some initial position to some final position pf .
If a collision between the quadcopter and the projectile is predicted, the quadcopter rapidly
plans a trajectory to avoid the projectile. The projectile is thrown by hand, meaning that
its trajectory can only be predicted by the system after it has been thrown. The position
xp(0) and velocity ẋp(0) of the projectile at the current controller time step are estimated
using position measurements received from the motion capture system and a Kalman filter.
The position of the projectile xp(t) is then predicted over a five second time horizon as a
quadratic function of time that depends on xp(0) and ẋp(0):

xp(t) = xp(0) + ẋp(0)t+
1

2
gEt2 (5.9)

The minimum allowable distance between the center of mass of the projectile and the
center of the quadcopter is chosen to be 40 cm, which is chosen such that there is at least
10 cm separation between the quadcopter and projectile to account for any trajectory tracking
and estimation errors. During each controller time step, we check whether the projectile is
predicted to collide with the quadcopter by checking whether their relative position x̃(t) ever
enters a sphere of radius 40 cm centered at the origin, and begin generating an avoidance
trajectories if a collision is detected. While evaluating candidate avoidance trajectories, we
not only check that the avoidance trajectory will not collide with the projectile during the
maneuver, but also check that the projectile will not collide with the quadcopter after the
quadcopter has reached the end position of the avoidance trajectory.

While tracking the avoidance trajectory, we try to generate sample return trajectories
at each controller time step that bring the quadcopter from its current state to rest at
the originally desired end position pf . Durations of the candidate return trajectories are
sampled between 0.5 s and 4 s. Once a feasible trajectory is found that does not collide
with the projectile and ends at pf , the avoidance trajectory is interrupted and the vehicle
begins tracking the return trajectory. Figure 5.3 shows a sequence of images from the
experiment. For the experiment shown in Figure 5.3, 2,371 candidate avoidance trajectories
were evaluated in the allocated 15 ms after first predicting a collision with the projectile.

5.7 Conclusion

In this chapter we presented a method for quickly detecting whether a polynomial trajectory
collides with a convex obstacle. This method can be applied to both static convex obstacles

CHAPTER 5. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
KNOWN ENVIRONMENTS 71

and dynamic obstacles whose boundaries do not rotate. We used the proposed algorithm
to perform rapid collision detection of quadcopter trajectories, which can be modeled by
fifth order polynomials in time. The ability to rapidly assess whether a given trajectory will
collide with obstacles allows for a collision-free trajectory to be found in a short period of time
by generating and checking many candidate trajectories for collisions. Because such a large
number of the candidate trajectories can be generated and evaluated in such a short period
of time, the vehicle is able to plan collision-free trajectories within milliseconds, enabling the
vehicle to avoid obstacles that suddenly appear while the vehicle is flying at high speeds.

Furthermore, the computational efficiency of the proposed algorithm does not require
the use of expensive or high power computational hardware onboard the vehicle. To this
end, the following chapter extends the efficient collision checking methods of this chapter
and demonstrates how they can enable a quadcopter to be flown autonomously using only a
low-power onboard computer.

72

Chapter 6

Computationally Efficient Trajectory
Generation in Unknown
Environments

This chapter extends the ideas presented in the previous chapter in a way that allows for
computationally efficient collision checking in previously unseen environments. Unlike the
previous chapter where obstacles in the environment were represented as convex shapes at
known positions, in this chapter we use depth images to represent the environment. Thus,
by using an onboard depth camera to sense the environment, the proposed computationally
efficient collision checking algorithm allows for autonomous flight using a low-power onboard
computer.

The algorithm presented in the chapter is called RAPPIDS, which is a novel collision
checking and planning algorithm for quadcopters that is capable of quickly finding local
collision-free trajectories given a single depth image from an onboard camera. This pyramid-
based spatial partitioning method enables rapid collision detection between candidate tra-
jectories and the environment. By leveraging the efficiency of our collision checking method,
we shown how a local planning algorithm can be run at high rates on computationally
constrained hardware, evaluating thousands of candidate trajectories in milliseconds. The
performance of the algorithm is compared to existing collision checking methods in simula-
tion, showing our method to be capable of evaluating orders of magnitude more trajectories
per second. Experimental results are presented showing a quadcopter quickly navigating a
previously unseen cluttered environment by running the algorithm on an ODROID-XU4 at
30 Hz.

Note that the material presented in this chapter is based on the following previously
published work, differing primarily in the notation used to describe the dynamics of the
vehicle.

• Nathan Bucki, Junseok Lee, and Mark W Mueller. “Rectangular pyramid partitioning
using integrated depth sensors (RAPPIDS): A fast planner for multicopter navigation”.

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 73

In: IEEE Robotics and Automation Letters 5.3 (2020), pp. 4626–4633

6.1 Introduction

The ability to perform high-speed flight in cluttered, unknown environments can enable a
number of useful tasks, such as the navigation of a vehicle through previously unseen areas
and rapid mapping of new environments. Many existing planning algorithms for navigation in
unknown environments have been developed for quadcopters, and can generally be classified
as map-based algorithms, memoryless algorithms, or a mixture of the two.

Map-based algorithms first fuse sensor data into a map of the surrounding environment,
and then perform path planning and collision checking using the stored map. For example,
[81] uses a local map to solve a nonconvex optimization problem that returns a smooth
trajectory which remains far from obstacles. Similarly, [82, 72, 73, 83] each find a series of
convex regions in the free-space of a dynamically updated map, and then use optimization-
based methods to find a series of trajectories through the convex regions. Although these
methods are generally able to avoid getting stuck in local minima (e.g. a dead end at the
end of a hallway), they generally require long computation times to fuse recent sensor data
into the global map.

Memoryless algorithms, however, only use the latest sensor measurements for planning.
For example, [84] and [71] both use depth images to perform local planning by organizing
the most recently received depth data into a k-d tree, which enables the distance from a
given point to the nearest obstacle to be quickly computed. The k-d tree is then used to
perform collision checking on a number of candidate trajectories, at which point the optimal
collision-free candidate trajectory is chosen to track. A different memoryless algorithm is
presented in [85] which inflates obstacles in the depth image based on the size of the vehicle,
allowing for trajectories to be evaluated directly in image space. In [86], a significant portion
of computation is performed offline in order to speed up online collision checking. The space
around the vehicle is first split into a grid, a finite set of candidate trajectories are generated,
and the grid cells with which each trajectory collides are then computed. Thus, when flying
the vehicle, if an obstacle is detected in a given grid cell, the corresponding trajectories can be
quickly determined to be in collision. However, such offline methods have the disadvantage
of constraining the vehicle to a less expressive set of possible candidate trajectories, e.g.
forcing the vehicle to only travel at a single speed.

Several algorithms also leverage previously gathered data while handling the latest sensor
measurements separately, allowing for more collision-free trajectories to be found than when
using memoryless methods while maintaining a fast planning rate. For example, in [87] a
stereo camera pair is used onboard a fixed-wing UAV to detect obstacles at a specific distance
in front of the vehicle, allowing for a local map of obstacles to be generated as the vehicle
moves forward. In [88] a number of recent depth images are used to find the minimum-
uncertainty view of a queried point in space, essentially giving the vehicle a wider field of
view for planning. Additionally, in [89] the most recent depth image is both organized into

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 74

a k-d tree and fused into a local map, allowing for rapid local planning in conjunction with
slower global planning.

Although the previously discussed planning algorithms have been shown to perform well
in complex environments, they typically require the use of an onboard computer with process-
ing power roughly equivalent to a modern laptop. This requirement can significantly increase
the cost, weight, and power consumption of a vehicle compared to one with more limited
computational resources. We address this problem by introducing a novel spatial partition-
ing and collision checking method to find collision-free trajectories through the environment
at low computational cost, enabling rapid path planning on vehicles with significantly lower
computational resources than previously developed systems.

The proposed planning algorithm, classified as a memoryless algorithm, takes the latest
vehicle state estimate and a single depth image from an onboard camera as input. The depth
image is used to generate a number of rectangular pyramids that approximate the free space
in the environment. As described in later sections, the use of pyramids in conjunction with a
continuous-time representation of the vehicle trajectory allows for any given trajectory to be
efficiently labeled as either remaining in the free space, i.e. inside the generated pyramids,
or as being potentially in collision with the environment. Thus, a large number of candidate
trajectories can be quickly generated and checked for collisions, allowing for the lowest cost
trajectory, as specified by a user provided cost function, to be chosen for tracking until the
next depth image is captured. Furthermore, by choosing a continuous-time representation of
the candidate trajectories, each trajectory can be quickly checked for input feasibility using
existing methods.

The use of pyramids to approximate the free space is advantageous because they can
be created efficiently by exploiting the structure of a depth image, they can be generated
on an as-needed basis (avoiding the up-front computation cost associated with other spatial
partitioning data structures such as k-d trees), and because they inherently prevent oc-
cluded/unknown space from being marked as free space. Additionally, because our method
is a memoryless method rather than a map-based method, it is robust to common mapping
errors resulting from poor state estimation (e.g. incorrect loop closures).

6.2 System Model and Relevant Properties

In this section we describe the form of the trajectories used for planning and several of
their relevant properties. These properties are later exploited to perform efficient collision
checking between the trajectories and the environment.

We assume the vehicle is equipped with sensors capable of producing depth images that
can be modeled using the standard pinhole camera model with focal length f . Let the depth-
camera-fixed frame C be located at the focal point of the image with z-axis zC perpendicular
to the image plane. The point at position (X, Y, Z) written in the depth-camera-fixed frame
is then located x = f X

Z
pixels horizontally and y = f Y

Z
pixels vertically from the image

center with depth value Z.

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 75

Trajectory and Collision Model

This chapter uses the same system model and trajectory representation as described in
Section 5.2. That is, the desired position trajectory of the vehicle can then be written as

dEBE(t) =
α

120
t5 +

β

24
t4 +

γ

6
t3 +

d̈EBE(0)

2
t2 + ḋEBE(0)t+ dEBE(0) (6.1)

where α, β, and γ ∈ R3 are constants that depend only on dEBE(T), ḋEBE(T), d̈EBE(T),
and T . As stated in the previous chapter, we refer the reader to [77] for details regarding
this relation, as well as methods for quickly checking whether constraints on the minimum
and maximum thrust and magnitude of the angular velocity of the quadcopter are satisfied
throughout the duration of the trajectory. We define dEBE(t) as a collision-free trajectory if
a sphere S centered at dEBE(t) that contains the vehicle does not intersect with any obstacles
for the duration of the trajectory.

We additionally define a similar trajectory sc(t) with initial position sc(0) coincident
with the depth-camera-fixed frame C such that

sc(t) =
α

120
t5 +

β

24
t4 +

γ

6
t3 +

d̈EBE(0)

2
t2 + ḋEBE(0)t+ sc(0) (6.2)

The trajectory sc(t) is used for collision checking rather than directly using the trajec-
tory of the center of mass dEBE(t) because sc(t) originates at the focal point of the depth
image, allowing for the use of the advantageous properties of sc(t) described in the following
subsections. Let SC be a sphere centered at sc(t) with radius r that contains the sphere S. If
the larger sphere SC does not intersect with any obstacles for the duration of the trajectory,
we can then also verify that the sphere containing the vehicle S remains collision-free. Thus,
we can use sc(t) and its advantageous properties to check if dEBE(t) is collision-free at the
expense of a small amount of conservativeness related to the difference in size between the
outer sphere SC and inner sphere S.

Trajectory sections with monotonically changing depth

We split a given trajectory, e.g. sc(t), into different sections with monotonically increasing
or decreasing distance along the z-axis zC of the depth-camera-fixed frame C (i.e. into
the depth image) as follows. First, we compute the rate of change of sc(t) along zC as
ḋz(t) = zC · ṡc(t). Then, by solving ḋz(t) = 0 for t ∈ [0, T], we can find points Tz at which
sc(t) might change direction along zC , defined as

Tz = {ti : ti ∈ [0, T], ḋz(ti) = 0} ∪ {0, T} (6.3)

Note Tz can be computed in closed-form because it only requires finding the roots of the
fourth order polynomial ḋz(t) = 0.

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 76

Splitting the trajectory into these monotonic sections is advantageous for collision check-
ing because we can compute the point of each monotonic section with the deepest depth
from the camera by simply evaluating the endpoints of the section. Thus, we can avoid
performing collision checking with any obstacles at a deeper depth than the deepest point
of the trajectory.

Trajectory-Plane Intersections

A similar method can be used to quickly determine if and/or when a given trajectory inter-
sects with an arbitrary plane defined by a point p ∈ R3 and unit normal n ∈ R3. Let the
distance of the trajectory from the plane be written as d(t) = n · (sc(t) − p). The set of
times Tcross at which sc(t) intersects the given plane are then defined as

Tcross = {ti : ti ∈ [0, T], d(ti) = 0} (6.4)

requiring the solution of the equation d(t) = 0. Unfortunately, d(t) is in general a fifth order
polynomial, meaning that its roots cannot be computed in closed-form and require more
computationally expensive methods to find.

To this end, we extend [77] and [66] in presenting the conditions under which finding
Tcross can be reduced to finding the roots of a fourth order polynomial. Specifically, if a
single crossing time of d(t) is known a priori, d(t) = 0 can be solved by factoring out the
known root and solving the remaining fourth order polynomial. This property is satisfied,
for example, by any plane with p := sc(0) (i.e. a plane that intersects the initial position of
the trajectory), resulting in the following equation for d(t):

d(t) = n ·

(
α

120
t4 +

β

24
t3 +

γ

6
t2 +

d̈EBE(0)

2
t+ ḋEBE(0)

)
t (6.5)

Thus, the remaining four unknown roots of (6.5) can be computed using the closed-
form equation for the roots of a fourth order polynomial, allowing for Tcross to be computed
extremely quickly. As described in the following section, we exploit this property in order
to quickly determine when a given trajectory leaves a given pyramid.

6.3 Algorithm Description

In this section we describe the our novel pyramid-based spatial partitioning method, its
use in performing efficient collision checking, and the algorithm used to search for the best
collision-free trajectory.1

1An implementation of the algorithm can be found at https://github.com/nlbucki/RAPPIDS

https://github.com/nlbucki/RAPPIDS

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 77

Figure 6.1: 2D side view illustrating the generation of a single pyramid P , shown in green,
from a single depth image and given point s. The depth values of each pixel are used to define
the division between free space F and occupied space O. Because the depth camera has a
limited field of view, we additionally consider any space outside the field of view farther than
distance l from the camera to be unknown space U , which is treated the same as occupied
space. The expanded pyramid Pexp (dash-dotted line) is first generated such that it does not
contain any portion of O or U , and then used to define pyramid P such that it is distance r
from any obstacles.

Pyramid generation

For each depth image generated by the vehicle’s depth sensor, we partition the free space of
the environment using a number of rectangular pyramids, where the apex of each pyramid
is located at the origin of the depth camera-fixed frame C (i.e. at sc(0)), and the base of
each pyramid is located at some depth Z and is perpendicular to the z-axis of the depth
camera-fixed frame zC as shown in Figure 6.1.

The depth value stored in each pixel of the image is used to define the separation of free
space F and occupied space O. We additionally treat the space U located outside the field of
view of the camera at depth l from the camera focal point as occupied space. Pyramid P is
defined such that while trajectory sc(t) remains inside P , the sphere containing the vehicle
SC will not intersect with any occupied space, meaning that the segment of sc(t) inside P
can be considered collision-free.

Note that if sc(t) remains inside the pyramid, we can not only guarantee that the vehicle
will not collide with any obstacles detected by the depth camera, but that the vehicle will
not collide with any occluded obstacles either. This differs from other methods that treat
each pixel in the depth image as an individual obstacle to be avoided, which can result
in the generation of over-optimistic trajectories that may collide with unseen obstacles.
Furthermore, our method straightforwardly incorporates field of view constraints, allowing

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 78

for the avoidance of nearly all unseen obstacles in addition to those detected by the depth
camera.

The function InflatePyramid is used to generate a pyramid P by taking an initial
point s as input and returning either a pyramid containing s or a failure indicator. In this
work we choose s to be the endpoint of a given trajectory that we wish to check for collisions,
and only generate a new pyramid if s is not already contained in an existing pyramid (details
are provided in the following subsection). We start by projecting s into the depth image
and finding the nearest pixel p. Then, pixels of the image are read in a spiral about pixel p
in order to compute the largest possible expanded rectangle Pexp that does not contain any
occupied space. Finally, pyramid P is computed by shrinking the expanded pyramid Pexp
such that each face of P is not within vehicle radius r of occupied space. Further details
regarding our implementation of InflatePyramid can be found online.1

This method additionally allows for pyramid generation failure indicators to be returned
extremely quickly. For example, consider the case where the initial point s exists inside
occupied space O. Then, only the depth value of the nearest pixel p must be read before
finding that no pyramid containing s can be generated, requiring only a single pixel of
the depth image to be processed. This property greatly reduces the number of operations
required to determine when a given point is in collision with the environment.

Collision checking using pyramids

Algorithm 2 describes how the set of all previously generated pyramids G is used to determine
whether a given trajectory sc(t) will collide with the environment. A trajectory is considered
collision-free if it remains inside the space covered by G for the full duration of the trajectory.
An example of Algorithm 2 is shown in Figure 6.2.

We first split the trajectory sc(t) into sections with monotonically changing depth as
described in Section 6.2, and insert the sections into listM using GetMonotonicSections
(line 4). Then, for each monotonic section s̄c(t), we compute the deepest point s̄ (i.e. one
of the endpoints of the section), and try to find a pyramid containing that point (line 6-8).
The function FindContainingPyramid (line 8) returns either a pyramid that contains s̄
or null, indicating no pyramid containing s̄ was found. If no pyramid in G contains s̄, we
attempt to generate a new pyramid using the method described in the previous subsection
(line 10), but if pyramid generation fails we declare the trajectory to be in collision (line 12).

Next, we try to compute the deepest point at which the monotonic section s̄c(t) intersects
one of the four lateral faces of the pyramid P . Using the method described in Section 6.2, we
compute the times at which s̄c(t) intersects each lateral face of the pyramid, and choose the
time t↓ at which s̄c(t) has the greatest depth (line 14). If s̄c(t) is found to not collide with
any of the lateral faces of the pyramid, then it necessarily must remain inside the pyramid
and the section can be declared collision-free. However, if s̄c(t) does collide with one of the
lateral faces of the pyramid, we split it at t↓ and add the section of s̄c(t) that is outside of
the pyramid to M (line 16). Thus, if each subsection of the trajectory is found to be inside

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 79

Algorithm 2 Single Trajectory Collision Checking

1: input: Trajectory sc(t) to be checked for collisions, set of all previously found pyramids
G, depth image D

2: output: Boolean indicating if trajectory is collision-free, updated set of pyramids G
3: function IsCollisionFree(sc(t), G, D)
4: M← GetMonotonicSections(sc(t))
5: whileM is not empty do
6: s̄c(t)← pop(M)
7: s̄← DeepestPoint(s̄c(t))
8: P ← FindContainingPyramid(G, s̄)
9: if P is null then
10: P ← InflatePyramid(s̄,D)
11: if P is null then
12: return false
13: push(P)→ G
14: t↓ ← FindDeepestCollisionTime(P , s̄c(t))
15: if t↓ is not null then
16: push(GetSubsection(s̄c(t), t

↓))→M
17: return true

the space covered by the set of pyramids G, then the trajectory is declared collision-free (line
17).

Note that this method of collision checking allows for pyramids to be generated on an
as-needed basis rather than requiring all pyramids to be generated in a batch process when
a new depth image arrives. This additionally avoids generating unneeded pyramids; only
those required for collision checking are created.

Planning algorithm

Algorithm 3 describes the path planning algorithm used in this work. The algorithm takes
as input the most recently received depth image and vehicle state estimate, where the state
estimate partially defines each candidate trajectory as given in (6.2). Within a user-specified
time budget, the algorithm repeatedly generates and evaluates candidate trajectories for
cost and the satisfaction of constraints, returning the lowest cost trajectory that satisfies
all constraints. We choose to use a random search algorithm due to its simplicity and
probabilistic optimality, though the collision checking algorithm presented in the previous
subsection can be used in conjunction with other planning algorithms as well (see [90], for
example).

Let GetNextCandidateTraj be defined as a function that returns a randomly gen-
erated candidate trajectory sc(t) using the methods described in [77] (line 7). The function
Cost is a user-specified function used to compare candidate trajectories (line 8). In this

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 80

Figure 6.2: 2D example of the collision checking method described by Algorithm 2 as used
to check a given trajectory for collisions. The trajectory is first split into sections with
monotonically changing depth, which are stored in list M. Top: A single trajectory section
s̄c(t) is chosen from list M. The deepest point of the trajectorysection s̄ is computed
and pyramid P1 containing s̄ is generated. The trajectory s̄c(t) is then subdivided into a
section that remains inside the pyramid (black) and a section that leaves the pyramid (gray).
Bottom: The trajectory section that leaves P1 is checked for collisions in the same manner.
Pyramid P2 is generated using the deepest point of the trajectory section, and then used to
verify that the trajectory section does not collide with the environment.

work, we define Cost to be the following, where d is a desired exploration direction:

Cost(sc(t)) =
d · (sc(0)− sc(T))

T
(6.6)

That is, better trajectories are those that cause the vehicle to move quickly in the desired
direction d. Note, however, that Cost can be defined arbitrarily by the user to include other
objectives based on the desired behavior of the vehicle (e.g. to favor increased distance to
other vehicles or people).

The function IsDynamicallyFeas (line 9) checks whether the given candidate trajec-
tory satisfies constraints on the total thrust and angular velocity of the vehicle using methods
described in [77]. Finally, the candidate trajectory is checked for collisions with the environ-
ment using IsCollisionFree (line 10). We check for collisions with the environment last
because it is the most computationally demanding step of the process.

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 81

Algorithm 3 Lowest Cost Trajectory Search

1: input: Latest depth image D and vehicle state
2: output: Lowest cost collision-free trajectory found s∗c(t) or an undefined trajectory

(indicating failure)
3: function FindLowestCostTrajectory()
4: s∗c(t)← undefined with Cost(s∗c(t)) =∞
5: G ← ∅
6: while computation time not exceeded do
7: sc(t)← GetNextCandidateTraj()
8: if Cost(sc(t)) < Cost(s∗c(t)) then
9: if IsDynamicallyFeas(sc(t)) then
10: if IsCollisionFree(sc(t), G, D) then
11: s∗c(t)← sc(t)

12: return s∗c(t)

In this way, Algorithm 3 can be used as a high-rate local planner that ensures the vehicle
avoids obstacles, while a global planner that may require significantly more computation
time can be used to specify high-level goals (e.g. the exploration direction d) without the
need to worry about obstacle avoidance or respecting the dynamics of the vehicle. We run
Algorithm 3 in a receding-horizon fashion, where each new depth image is used to compute
a new collision-free trajectory. We additionally constrain our candidate trajectories to bring
the vehicle to rest, so that if no feasible trajectories are found during a given planning step,
the last feasible trajectory can be tracked until the vehicle comes to rest.

6.4 Algorithm Performance

In this section we assess the performance of the proposed algorithm in terms of its conserva-
tiveness in labeling trajectories as collision-free, its speed, and its ability to evaluate a dense
set of candidate trajectories in various amounts of compute time. We additionally compare
our method to other state-of-the-art memoryless planning algorithms.

To benchmark our collision checking method, we conduct various Monte Carlo simulations
using a series of randomly generated synthetic depth images and vehicle states. Examples
of several generated depth images are shown in Figure 6.3. The image is generated by plac-
ing two 20 cm thick rectangles with random orientations in front of the camera at distances
sampled uniformly at random on (1.5 m, 3 m). Note that this choice of obstacles is arbitrary;
any number, distribution, or type of obstacles could be used to conduct such tests. However,
rather than trying to emulate a specific type of environment, we choose to use obstacles in
our benchmark that are primarily easy to both visualize and reason about conceptually. Fur-
thermore, the use of such obstacles does not unfairly benefit the proposed collision checking
method by, e.g., breaking the free-space into regions that may be easier to describe using

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 82

Figure 6.3: Three examples of synthetic depth images used for benchmarking the proposed
algorithm. Two rectangular obstacles are generated at different constant depths. The back-
ground is considered to be at infinite depth.

pyramids.
The initial velocity of the vehicle in the camera-fixed z-direction zC is sampled uniformly

on (0 m s−1, 4 m s−1), and the initial velocity of the vehicle in both the x-direction xC and y-
direction yC is sampled uniformly on (−1 m s−1, 1 m s−1). We assume the camera is mounted
such that zC is perpendicular to the thrust direction of the vehicle, and thus set the initial
acceleration of the vehicle in both the xC and zC directions to zero. The initial acceleration
in the yC direction is sampled uniformly on (−5 m s−2, 5 m s−2).

The planner generates candidate trajectories that come to rest at randomly sampled
positions in the field of view of the depth camera. Specifically, positions in the depth image
are sampled uniformly in pixel coordinates and then deprojected to a depth that is sampled
uniformly on (1.5 m, 3 m). The duration of each trajectory is sampled uniformly on (2 s, 3 s).

The algorithm was implemented in C++ and compiled using GCC version 5.4.0 with the
-O3 optimization setting. Three platforms were used to assess performance: a laptop with
an Intel i7-8550U processor set to performance mode, a Jetson TX2, and an ODROID-XU4.
The algorithm is run as a single thread in all scenarios.

Conservativeness

We first analyze the accuracy of the collision checking method described by Algorithm 2. A
key property of our method is that it will never erroneously label a trajectory as collision-
free that either collides with an obstacle or has the potential to collide with an occluded
obstacle. Such a property is typically a requirement for collision checking algorithms used
with aerial vehicles, as a trajectory mislabeled as collision-free can result in a catastrophic
crash resulting in a total system failure.

However, because the generated pyramids cannot exactly describe the free space of the
environment, our method may erroneously label some collision-free trajectories as being
in-collision. In order to quantify this conservativeness, we compare our method to a ground-

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 83

Figure 6.4: Conservativeness of the collision checking algorithm as a function of the maximum
number of pyramids allowed to be generated. We define conservativeness as the number of
trajectories erroneously labeled as in-collision divided by the total number of trajectories
labeled as in-collision. The free-space of the environment is described with increasing detail
as more pyramids are allowed to be generated, leading to a lower number of trajectories
being erroneously labeled as in-collision.

truth, ray-tracing based collision checking method capable of considering both field-of-view
constraints and occluded obstacles. We define conservativeness as the number of trajectories
erroneously labeled as in-collision divided by the total number of trajectories labeled (both
correctly and incorrectly) as in-collision. A single test consists of first generating a synthetic
scene and random initial state of the vehicle as previously described. We then generate 1000
random trajectories for each scene, and perform collision checking both with our method
and the ground-truth method. The number of trajectories both correctly and incorrectly
labeled as in-collision are averaged over 104 such scenes. Additionally, in order to quantify
how well the environment can be described using the pyramids generated by our method, we
limit the number of pyramids the collision checking algorithm is allowed to use, and repeat
this test for various pyramid limits.

Figure 6.4 shows how the over-conservativeness of our method decreases as the number of
pyramids allowed to be used for collision checking increases. The percent of mislabeled tra-
jectories is initially higher because the environment cannot be described with high accuracy
using fewer pyramids. However, conservativeness remains nearly constant for larger pyramid
limits, indicating that our method may erroneously mislabel a small number of collision-free
trajectories (e.g. those in close proximity to obstacles). Note that we do not limit the num-
ber of pyramids generated when using the planning algorithm described in Algorithm 3, as
we have found it to be unnecessary in practice.

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 84

Table 6.1: Average Collision Checking Time Per Trajectory

Computer
Single Trajectory

Collision Check (µs)
Florence et al.2[84] i7 NUC 56
Lopez et al.2 [71] i7-2620M 48
RAPPIDS (ours) i7-8550U 1.20
RAPPIDS (ours) Jetson TX2 3.81
RAPPIDS (ours) ODROID-XU4 8.72

Collision Checking Speed

Next we compare our collision checking method to the state-of-the-art k-d tree based methods
described in [84] and [71]. Both our method and k-d tree methods involve two major steps:
the building of data structures (i.e. a k-d tree, or the pyramids described in this chapter)
and the use of those data structures to perform collision checking with the environment.
Our method differs from k-d tree based methods, however, in its over-conservativeness.
Specifically, we consider trajectories that pass through occluded space to be in collision with
the environment, while k-d tree based methods only consider trajectories that pass within
the vehicle radius of detected obstacles to be in collision.

We compare our method to the k-d tree methods by first limiting the amount of time
allocated for pyramid generation such that it is similar to the time required to build a k-
d tree as reported in [84] and [71] (roughly 1.81 ms). We then check 1000 trajectories for
collisions, and compute the average time required to check a single trajectory for collisions
using the generated pyramids. Similar to [84] and [71], we use a 160× 120 resolution depth
image which we generate using the previously described method, and average our results
over 104 Monte Carlo trails.

Table 6.1 shows how the average performance of our method outperforms the best-case
results reported by [84] and [71]. On average 27.5, 19.3, and 15.3 pyramids were generated
during the allocated 1.81 ms pyramid generation time on i7, TX2, and ODROID platforms
respectively. The difference in computation time can be reasoned about using a time com-
plexity analysis. Let a given depth image contain n pixels. Then O(nlog(n)) operations are
required to build a k-d tree, while O(n) operations are required to generate a single pyramid
(of which there are typically few). Because a single k-d tree query takes O(log(n)) time, if
the trajectory must be checked for collisions at m sample points along the trajectory, then
the time complexity for checking a single trajectory for collisions is O(mlog(n)). However,
collision checking a single trajectory using our method can be done in near constant time,
as it only requires finding the roots of several fourth order polynomials (which is done in
closed-form) as described in Section 6.2. Additionally, note that while an entire k-d tree
must be built before being used to check trajectories for collisions, the pyramids generated
by our method can be built on an as-needed basis, reducing computation time even further.

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 85

Figure 6.5: Average planner performance as a function of allocated computation time across
various platforms. As computation time increases, the number of trajectories evaluated
increases at different rates for platforms with different amounts of computation power.

Overall Planner Performance

Finally, we describe the overall performance of the planner, i.e. Algorithm 3, using the same
Monte Carlo simulation but with 640 × 480 resolution depth images, which are the same
resolution as those used in the physical experiments described in the following section. The
number of trajectories evaluated by the planner is used as a metric of performance, where a
larger number of generated trajectories indicates a better coverage of the trajectory search
space and thus higher likelihood of finding the lowest possible cost trajectory within the
allocated planning time.

Figure 6.5 shows the results of running the planner for 104 Monte Carlo trails each on
the i7-8550U processor, the Jetson TX2, and the ODROID-XU4 for computation time limits
between 0 ms and 50 ms. Naturally, as computation time increases, the average number of
trajectories evaluated increases monotonically. Furthermore, we observe that the i7-8550U
outperforms the Jetston TX2, which outperforms the ODROID-XU4. The difference in
performance can be explained by the fact that the Jetston TX2 and especially the ODROID-
XU4 are intended to be low-power devices capable of being used in embedded applications.
However, due to the computational efficiency of our collision checking method, we found that
even the ODROID-XU4 is capable of evaluating a sufficiently large number of trajectories
within a small amount of time. This makes it feasible to use low-power devices such as the
ODROID-XU4 as onboard flight controllers while still achieving fast, reactive flight.

2The best reported average collision checking time required per trajectory is used for comparison.

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 86

Figure 6.6: Vehicle used in experiments. A RealSense D435i depth camera is used to acquire
depth images, and a RealSense T265 tracking camera is used to obtain state estimates of
the vehicle. The proposed algorithm is run on an ODROID-XU4, which sends desired thrust
and angular velocity commands to a Crazyflie 2.0 flight controller.

6.5 Experimental Results

In this section we demonstrate the use of the proposed algorithm on an experimental quad-
copter, shown in Figure 6.6. The quadcopter has a mass of 1.0 kg, and is equipped with
an ODROID-XU4, RealSense D435i depth camera, RealSense T265 tracking camera, and
Crazyflie 2.0 flight controller. The ODROID is used in order to demonstrate the feasibility
of running the proposed algorithm at high rates on cheap, low mass, and low power hardware.
The tracking camera provides pose estimates to the ODROID at 200 Hz, which a Kalman
filter uses to compute translational velocity estimates. Filtered acceleration estimates are
obtained at 100 Hz using the IMU onboard the crazyflie flight controller. The depth camera
is configured to capture 640× 480 resolution depth images at 30 Hz, and the proposed plan-
ning algorithm is run for 30 ms when each new depth image arrives using the latest state
estimate provided by the Kalman filter. If no collision-free trajectories can be found during
a given planning stage, the vehicle continues to track the most recently found collision-free
trajectory from a previous planning stage until either a new collision-free trajectory is found
or the vehicle comes to rest.

The vehicle was commanded to fly in a U-shaped tunnel environment that was previously
unseen by the vehicle, shown in Figure 6.7. Each branch of the tunnel measured roughly
2.5 m in width and height, 20 m in length, and was filled with various obstacles for the vehicle
to avoid. The candidate trajectories generated by the planner were generated using the same

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 87

Figure 6.7: Visualization of flight experiment in U-shaped tunnel environment. The path of
the vehicle is shown as a red line. The vehicle starts at the green sphere and ends at the
red sphere. The map of the environment (top) is generated at the end of the experiment
using depth images captured by the depth camera. Two depth images (bottom) where no
collision-free trajectories were found are shown to illustrate cases where the planner fails.
Pixels with depth values less than 0.75 m but greater than the vehicle radius are highlighted
in blue. In the left image, an obstacle occludes a significant portion of the image, preventing
collision-free trajectories from being found due to the proximity of the obstacle to the vehicle.
In the right image, a very small amount of noise is present near the bottom of the image,
causing the planner to hallucinate the presence of close proximity obstacles in what would
otherwise be free-space.

method described in Section 6.4. 3

The desired exploration direction d used to compute the cost of each candidate trajectory
as given by (6.6) is set as follows. We initialize d to be horizontal and to point down the first
hallway. When the vehicle is at rest and no feasible trajectories are found by the planner,
the desired exploration direction d is rotated 90◦ to the right of the vehicle, allowing the
vehicle to navigate around corners. We then stop the test when the vehicle reaches the end
of the second hallway. We use this method of choosing the exploration direction simply as a
matter of convenience in demonstrating the use of our algorithm in a cluttered environment.
However, many other suitable methods of providing high-level goals to our algorithm can be
used (e.g. [91]), but are typically application dependent and thus are not discussed here.

During the experiment, the vehicle was able to find at least one collision-free trajectory

3A video of the experiment can be viewed at https://youtu.be/Pp-HIT9S6ao

https://youtu.be/Pp-HIT9S6ao

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 88

Figure 6.8: Cumulative number of planning stages where at least one collision-free trajectory
was found. The sections of the graph highlighted in red correspond to periods in which the
vehicle is facing the wall at the end of the hallway. A large increase in successful planning
stages is observed between 22 s and 26 s when the vehicle is navigating in the relatively
uncluttered area between the two hallways.

in 35.3% of the 30 ms planning stages. Of the planning stages where at least one feasible
trajectory was found, 2069.2 candidate trajectories and 2.9 pyramids were generated on
average. The vehicle traveled approximately 40 m over 43 s, and attained a maximum speed
of 2.66 m s−1.

The low percentage of planning stages where at least one collision-free trajectory was
found primarily are cases where the vehicle passes closely to obstacles and also by the sig-
nificant amount of noise present in the depth images. Figure 6.7 shows examples of both
cases. Note that the amount of noise present in the depth images can be reduced via fil-
tering, although this may lead to the potential misdetection of small and/or thin obstacles.
Additionally, Figure 6.8 shows how the successful planning stages are distributed throughout
the experiment. A lower percent of successful planning stages is observed when the vehicle
is navigating the cluttered hallways than the relatively open area between the two hallways,
which is potentially due to the difference in obstacle density and lighting conditions (leading
to a difference in depth image noise levels).

6.6 Conclusion

In this chapter we presented a novel pyramid-based spatial partitioning method that allows
for efficient collision checking between a given trajectory and the environment as represented
by a depth image. The method allows quadcopters with limited computational resources
to quickly navigate cluttered environments by generating collision-free trajectories at high
rates. A comparison to existing state-of-the-art depth-image-based path planning methods
was performed via Monte Carlo simulation, showing our method to significantly reduce the

CHAPTER 6. COMPUTATIONALLY EFFICIENT TRAJECTORY GENERATION IN
UNKNOWN ENVIRONMENTS 89

computation time required to perform collision checking with the environment while being
more conservative than other methods by implicitly considering occluded obstacles. Finally,
real-world experiments were presented that demonstrate the use of our algorithm on com-
putationally low-power hardware to perform fully autonomous flight in a previously unseen,
cluttered environment. Similar to the previous chapter, this chapter has demonstrated how
improving the computational efficiency of path planning methods used with quadcopters can
reduce the hardware requirements of such vehicles.

90

Chapter 7

Conclusions and Future Work

In this dissertation two novel quadcopter designs were presented which can enhance the op-
erational capabilities of quadcopters, and two novel path planning techniques were presented
that reduce the computational requirements of onboard computers needed to fly such vehicles
autonomously. These advances were focused on maintaining the aspects of quadcopters that
make them useful platforms for accomplishing various tasks (e.g. design simplicity and low
cost) while extending their ability to perform new tasks or to operate in new environments.
In this chapter we first summarize the individual topics covered in the preceding chapters,
and finally conclude with a discussion of the potential extensions of this work in the future.

The first novel quadcopter design focused on reducing the sensitivity of quadcopters to
torque disturbances by increasing the net angular momentum of the vehicle using a mo-
mentum wheel. It was shown that the sensitivity of the vehicle to torque disturbances
monotonically decreases with increasing angular momentum, implying that spinning the
momentum wheel faster will strictly improve the torque disturbance rejection capabilities of
the vehicle. Furthermore, because this effect scales with angular momentum, a lightweight
momentum wheel can achieve the same effect as a heavier momentum wheel by spinning
faster at the expense of requiring a higher kinetic energy to be stored in the wheel. Thus,
such a vehicle design was shown to allow for quadcopters to operate in environments with
large torque disturbances (e.g. hail storms and high wind-shear environments), with only a
marginal increase in mass required due to the weight of the momentum wheel.

In the following chapter, a vehicle capable of changing shape mid-flight was presented.
Similar to the vehicle using an added momentum wheel, this vehicle was designed to minimize
the difference between it and a conventional quadcopter, while allowing novel tasks to be
performed outside the abilities of a conventional quadcopter. The only difference between the
proposed vehicle design and a conventional quadcopter was the use of passive rotary joints
that connect the four arms of the vehicle to the central body. These additional unactuated
degrees of freedom where then shown to enable the vehicle to change shape midair, allowing
the vehicle to traverse passageways that would otherwise be impassable, as well as perform
some basic manipulation and perching tasks. Specifically, the vehicle required no actuators
or sensors that were not present on a conventional quadcopter, allowing for a simplistic

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 91

design to be used to accomplish several novel tasks.
In next chapters, two similar algorithms were presented that allowed for computationally

efficient collision checking to be performed between quadcopter trajectories and environ-
ments represented using either convex obstacles or depth images. Due to the computational
efficiency of the proposed algorithms, it was shown that a low-power onboard computer can
be used to fly a quadcopter through cluttered environments autonomously, reducing the on-
board computational hardware requirements of a quadcopter compared to existing methods.
The computational efficiency of the proposed algorithms was demonstrated using both Monte
Carlo simulations as well as several flight experiments, where the algorithms were shown to
be able to control a quadcopter to avoid both static and fast-moving dynamic obstacles.
In contrast to the chapters focused on design changes to a conventional quadcopter, these
chapters focused on methods that allow for less expensive and lower power computers to be
used onboard vehicles while still allowing them to navigate autonomously.

Thus, the previous chapters have shown how the performance and utility of quadcopters
can be advanced beyond the current state-of-the-art using both subtle design changes and
algorithmic advances. These changes enhance the ability of quadcopters to operate in new
environments, namely environments with high torque disturbances, narrow passageways, and
environments with both static and dynamic obstacles that are to be avoided at high speeds.
Note that although operation in these environments could perhaps be marginally improved
via either design changes or control changes alone, in this work we have leveraged the joint
development of both novel quadcopter designs and control algorithms together to allow for
much more significant improvements upon what conventional quadcopters can achieve.

In conclusion, this dissertation has focused on a variety of ways that the usefulness of
quadcopters can be improved in terms of design, control, and path planning. In each case
we examined changes that have the potential to improve the functionality of a quadcopter
without significantly diminishing the aspects that make a conventional quadcopter useful
(e.g. VTOL capability, mechanical simplicity, etc.). Specifically, the use of a momentum
wheel was shown to allow a quadcopter to fly in environments with large torque disturbances,
the use of passive hinges was shown to allow a quadcopter to traverse narrow gaps and
perform grasping and perching tasks, and the use of novel path planning algorithms was
shown to allow for low power computers to be used to fly quadcopters autonomously through
cluttered environments. Thus, we argue that the utility of quadcopters can be improved using
the aforementioned ideas, with only relatively small (or nonexistent) tradeoffs required to
achieve such improvements in utility.

7.1 Future Work

Although there are many interesting avenues of research stemming from the topics covered
in this dissertation, several particularly interesting topics are included below.

Related to the vehicle with added angular momentum as described in Chapter 3, further
investigation is warranted of the type and frequency of disturbances encountered in specific

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 92

real-world scenarios (e.g. hail storms, tornadoes, etc.). This type of analysis could help
better quantify the gain in utility offered by the use of angular momentum as a disturbance
rejection mechanism. Furthermore, the design of a more lightweight momentum wheel that is
capable of safely spinning at higher angular velocities could be an interesting design challenge.
Because the angular momentum of the wheel scales with the angular velocity of the wheel,
in theory the mass of the wheel can be reduced so long as the wheel can be spun at a
proportionally higher speed, though (as noted in the chapter) the energy stored in the wheel
will increase quadratically with wheel speed.

Relating to the work on the morphing vehicle described in Chapter 4, interesting planning
and navigation questions still remain. Because the described vehicle can utilize its morphing
capabilities to traverse areas the vehicle would otherwise be unable to traverse in its normal
configuration, there is an opportunity to design novel path-planning algorithms that are able
to automatically decide when and where the vehicle should change configurations.

Finally, the material related to planning presented in Chapters 5 and 6 could be extended
by investigating the usefulness of optimization based path planning methods. While the
presented methods use random sampling to find nearly-optimal collision-free trajectories, in
principle more sophisticated nonconvex optimization methods could be used to improve the
efficiency with which the optimal trajectory is found during a given planning step. Although
this would not necessarily improve the ability of the vehicle to avoid collisions, such methods
have the potential to either improve the quality of generated trajectories or to reduce the
computation time required to generate collision-free trajectories.

In a more broad view, the future development of the quadcopter is likely to focus on
improving range and flight time as well. For example, many recent quadcopter-like designs
(such as [92]) have focused on allowing for flight in a fixed-wing configuration while still
enabling the vertical takeoff and landing capability that makes the quadcopter so useful.
These quadcopter-like vehicles are able to fly long distances more efficiently than conven-
tional quadcopter designs by taking advantage of the aerodynamic properties of the vehicle,
and could potentially prove more useful than a conventional quadcopter design for certain
applications requiring long flight times.

In summary, there are numerous opportunities for improvement upon the conventional
quadcopter design and the algorithms used to control them. Although several such design
and control changes were presented in this dissertation, the full mechanical and algorithmic
design space is yet to be exhaustively explored, and there are likely even more ideas capable
of improving the utility of such aerial vehicles in the future.

93

Bibliography

[1] Sonia Waharte and Niki Trigoni. “Supporting search and rescue operations with
UAVs”. In: 2010 International Conference on Emerging Security Technologies (EST).
IEEE. 2010, pp. 142–147.

[2] Teodor Tomic et al. “Toward a fully autonomous UAV: Research platform for indoor
and outdoor urban search and rescue”. In: IEEE Robotics & Automation Magazine
19.3 (2012), pp. 46–56.

[3] Huy Xuan Pham et al. “A distributed control framework of multiple unmanned aerial
vehicles for dynamic wildfire tracking”. In: IEEE Transactions on Systems, Man, and
Cybernetics: Systems 50.4 (2018), pp. 1537–1548.

[4] Youngjun Choi et al. “Multi-UAV trajectory optimization utilizing a NURBS-based
terrain model for an aerial imaging mission”. In: Journal of Intelligent & Robotic
Systems 97.1 (2020), pp. 141–154.

[5] Abdul Nishar et al. “Thermal infrared imaging of geothermal environments and by
an unmanned aerial vehicle (UAV): A case study of the Wairakei–Tauhara geothermal
field, Taupo, New Zealand”. In: Renewable Energy 86 (2016), pp. 1256–1264.

[6] Naser Hossein Motlagh, Miloud Bagaa, and Tarik Taleb. “UAV-based IoT platform:
A crowd surveillance use case”. In: IEEE Communications Magazine 55.2 (2017),
pp. 128–134.

[7] Sarra Berrahal et al. “Border surveillance monitoring using quadcopter UAV-aided
wireless sensor networks”. In: Journal of Communications Software and Systems 12.1
(2016), pp. 67–82.

[8] Inkyu Sa and Peter Corke. “Vertical infrastructure inspection using a quadcopter and
shared autonomy control”. In: Field and Service Robotics. Springer. 2014, pp. 219–232.

[9] Charles Richter, Adam Bry, and Nicholas Roy. “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments”. In: Robotics Research.
Springer, 2016, pp. 649–666.

[10] Daniel Mellinger, Nathan Michael, and Vijay Kumar. “Trajectory generation and con-
trol for precise aggressive maneuvers with quadrotors”. In: The International Journal
of Robotics Research 31.5 (2012), pp. 664–674.

BIBLIOGRAPHY 94

[11] Davide Falanga et al. “Aggressive quadrotor flight through narrow gaps with onboard
sensing and computing using active vision”. In: IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2017, pp. 5774–5781.

[12] Inkyu Sa and Peter Corke. “System identification, estimation and control for a cost
effective open-source quadcopter”. In: 2012 IEEE International Conference on Robotics
and Automation. IEEE. 2012, pp. 2202–2209.

[13] Vaibhav Ghadiok, Jeremy Goldin, and Wei Ren. “On the design and development
of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost
quadrotor”. In: Autonomous Robots 33.1 (2012), pp. 41–68.

[14] Paul Pounds et al. “Design of a four-rotor aerial robot”. In: Proceedings of the
2002 Australasian Conference on Robotics and Automation (ACRA 2002). Australian
Robotics & Automation Association. 2002, pp. 145–150.

[15] P. H. Zipfel. Modeling and Simulation of Aerospace Vehicle Dynamics. 2nd ed. Amer-
ican Institute of Aeronautics and Astronautics, 2007.

[16] Brian Anderson and John Moore. Optimal Control: Linear Quadratic Methods.
Prentice-Hall International, 1989.

[17] Nathan Bucki and Mark W Mueller. “Improved Quadcopter Disturbance Rejection
Using Added Angular Momentum”. In: IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE. 2018.

[18] Nathan Bucki and Mark W Mueller. “A novel multicopter with improved torque dis-
turbance rejection through added angular momentum”. In: International Journal of
Intelligent Robotics and Applications 3.2 (2019), pp. 131–143.

[19] Steven Waslander and Carlos Wang. “Wind disturbance estimation and rejection for
quadrotor position control”. In: AIAA Infotech@ Aerospace Conference and AIAA
Unmanned... Unlimited Conference. 2009, p. 1983.

[20] Lénäıck Besnard, Yuri B Shtessel, and Brian Landrum. “Quadrotor vehicle control via
sliding mode controller driven by sliding mode disturbance observer”. In: Journal of
the Franklin Institute 349.2 (2012), pp. 658–684.

[21] David Cabecinhas, Rita Cunha, and Carlos Silvestre. “A nonlinear quadrotor trajec-
tory tracking controller with disturbance rejection”. In: Control Engineering Practice
26 (2014), pp. 1–10.

[22] Rongting Zhang, Quan Quan, and K-Y Cai. “Attitude control of a quadrotor aircraft
subject to a class of time-varying disturbances”. In: IET control theory & applications
5.9 (2011), pp. 1140–1146.

[23] Peter W Likins. “Attitude stability criteria for dual spin spacecraft.” In: Journal of
Spacecraft and Rockets 4.12 (1967), pp. 1638–1643.

[24] DL Mingori. “Effects of energy dissipation on the attitude stability of dual-spin satel-
lites”. In: AIAA Journal 7.1 (1969), pp. 20–27.

BIBLIOGRAPHY 95

[25] Matthew Piccoli and Mark Yim. “Passive stability of a single actuator micro aerial
vehicle”. In: IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2014, pp. 5510–5515.

[26] Mark W Mueller and Raffaello D’Andrea. “Relaxed hover solutions for multicopters:
Application to algorithmic redundancy and novel vehicles”. In: The International Jour-
nal of Robotics Research 35.8 (2016), pp. 873–889.

[27] Weixuan Zhang, Mark W Mueller, and Raffaello D’Andrea. “A controllable flying
vehicle with a single moving part”. In: IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2016, pp. 3275–3281.

[28] Scott Driessens and Paul Pounds. “The triangular quadrotor: a more efficient quadrotor
configuration”. In: IEEE Transactions on Robotics 31.6 (2015), pp. 1517–1526.

[29] Markus Ryll, Heinrich H Bülthoff, and Paolo Robuffo Giordano. “First flight tests
for a quadrotor UAV with tilting propellers”. In: IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2013, pp. 295–302.

[30] Dustin Alexander Wallace. “Dynamics and Control of a Quadrotor with Active Geo-
metric Morphing”. MA thesis. 2016.

[31] Mark Wilfried Mueller and Raffaello D’Andrea. “Stability and control of a quadro-
copter despite the complete loss of one, two, or three propellers”. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). 2014.

[32] Matthew Piccoli and Mark Yim. “Passive stability of vehicles without angular mo-
mentum including quadrotors and ornithopters”. In: IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2015, pp. 1716–1721.

[33] Alex Kushleyev et al. “Towards a swarm of agile micro quadrotors”. In: Autonomous
Robots 35.4 (2013), pp. 287–300.

[34] Michael Green and David Limebeer. Linear Robust Control. Dover Publications, 1995.

[35] Barnes W. McCormick. Aerodynamics Aeronautics and Flight Mechanics. John Wiley
& Sons, Inc, 1995.

[36] Mark Wilfried Mueller. “Multicopter attitude control for recovery from large distur-
bances”. In: CoRR abs/1802.09143 (2018). arXiv: 1802.09143. url: http://arxiv.
org/abs/1802.09143.

[37] Arthur Bryson and Yu-Chi Ho. Applied Optimal Control: Optimization, Estimation
and Control. CRC Press, 1975.

[38] Nathan Bucki and Mark W Mueller. “Design and Control of a Passively Morphing
Quadcopter”. In: IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2019, pp. 9116–9122.

[39] Nathan Bucki, Jerry Tang, and Mark W Mueller. “Design and Control of a
Midair Reconfigurable Quadcopter using Unactuated Hinges”. In: arXiv preprint
arXiv:2103.16632 (2021).

http://arxiv.org/abs/1802.09143
http://arxiv.org/abs/1802.09143
http://arxiv.org/abs/1802.09143

BIBLIOGRAPHY 96

[40] Amanda Bouman et al. “Design and Autonomous Stabilization of a Ballistically-
Launched Multirotor”. In: IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2020, pp. 8511–8517.

[41] Stefano Mintchev et al. “Foldable and self-deployable pocket sized quadrotor”. In:
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2015,
pp. 2190–2195.

[42] Na Zhao et al. “The deformable quad-rotor: Design, kinematics and dynamics charac-
terization, and flight performance validation”. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 2391–2396.

[43] Dangli Yang et al. “Design, Planning, and Control of an Origami-inspired Foldable
Quadrotor”. In: 2019 American Control Conference (ACC). IEEE. 2019, pp. 2551–
2556.

[44] A Desbiez et al. “X-Morf: A crash-separable quadrotor that morfs its X-geometry in
flight”. In: 2017 Workshop on Research, Education and Development of Unmanned
Aerial Systems (RED-UAS). IEEE. 2017, pp. 222–227.

[45] Ye Bai and Srikanth Gururajan. “Evaluation of a Baseline Controller for Autonomous
“Figure-8” Flights of a Morphing Geometry Quadcopter: Flight Performance”. In:
Drones 3.3 (2019), p. 70.

[46] Davide Falanga et al. “The foldable drone: A morphing quadrotor that can squeeze
and fly”. In: IEEE Robotics and Automation Letters 4.2 (2018), pp. 209–216.

[47] Amedeo Fabris et al. “Geometry-aware Compensation Scheme for Morphing Drones”.
In: arXiv preprint arXiv:2003.03929 (2020).

[48] Giovanny Ortega Vargas et al. “Dynamic modeling of a multi-rotorcraft uas with mor-
phing capabilities”. In: 2015 International Conference on Unmanned Aircraft Systems
(ICUAS). IEEE. 2015, pp. 963–971.

[49] Akinori Sakaguchi, Takashi Takimoto, and Toshimitsu Ushio. “A Novel Quadcopter
with A Tilting Frame using Parallel Link Mechanism”. In: 2019 International Confer-
ence on Unmanned Aircraft Systems (ICUAS). IEEE. 2019, pp. 674–683.

[50] Valentin Riviere, Augustin Manecy, and Stéphane Viollet. “Agile robotic fliers: A
morphing-based approach”. In: soft robotics 5.5 (2018), pp. 541–553.

[51] Quentin Lindsey, Daniel Mellinger, and Vijay Kumar. “Construction with quadrotor
teams”. In: Autonomous Robots 33.3 (2012), pp. 323–336.

[52] Justin Thomas et al. “Avian-inspired grasping for quadrotor micro UAVs”. In: ASME
2013 international design engineering technical conferences and computers and infor-
mation in engineering conference. American Society of Mechanical Engineers Digital
Collection. 2013.

[53] Matko Orsag et al. “Stability control in aerial manipulation”. In: 2013 American Con-
trol Conference. IEEE. 2013, pp. 5581–5586.

BIBLIOGRAPHY 97

[54] Christopher Korpela, Matko Orsag, and Paul Oh. “Towards valve turning using a dual-
arm aerial manipulator”. In: 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 2014, pp. 3411–3416.

[55] Tomoki Anzai et al. “Aerial grasping based on shape adaptive transformation by halo:
horizontal plane transformable aerial robot with closed-loop multilinks structure”. In:
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2018,
pp. 6990–6996.

[56] Daniel Mellinger et al. “Design, modeling, estimation and control for aerial grasping
and manipulation”. In: 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2011, pp. 2668–2673.

[57] Xiangdong Meng, Yuqing He, and Jianda Han. “Survey on Aerial Manipulator: System,
Modeling, and Control”. In: Robotica (), pp. 1–30.

[58] Hossein Bonyan Khamseh, Farrokh Janabi-Sharifi, and Abdelkader Abdessameud.
“Aerial manipulation - A literature survey”. In: Robotics and Autonomous Systems
107 (2018), pp. 221–235.

[59] Elliot W Hawkes et al. “Dynamic surface grasping with directional adhesion”. In: 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2013,
pp. 5487–5493.

[60] Arash Kalantari et al. “Autonomous perching and take-off on vertical walls for a
quadrotor micro air vehicle”. In: IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2015, pp. 4669–4674.

[61] Katie M Popek et al. “Autonomous Grasping Robotic Aerial System for Perching
(AGRASP)”. In: IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE. 2018, pp. 1–9.

[62] Kaiyu Hang et al. “Perching and resting - A paradigm for UAV maneuvering with
modularized landing gears”. In: Science Robotics 4.28 (2019), eaau6637.

[63] Courtney E Doyle et al. “An avian-inspired passive mechanism for quadrotor perching”.
In: IEEE/ASME Transactions On Mechatronics 18.2 (2012), pp. 506–517.

[64] Matthias Faessler, Davide Falanga, and Davide Scaramuzza. “Thrust mixing, satura-
tion, and body-rate control for accurate aggressive quadrotor flight”. In: IEEE Robotics
and Automation Letters 2.2 (2017), pp. 476–482.

[65] Ingo Schiffner et al. “Minding the gap: in-flight body awareness in birds”. In: Frontiers
in zoology 11.1 (2014), p. 64.

[66] Nathan Bucki and Mark W Mueller. “Rapid Collision Detection for Multicopter Tra-
jectories”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2019.

[67] Steven LaValle. “Rapidly-exploring random trees: A new tool for path planning”. In:
(1998).

BIBLIOGRAPHY 98

[68] Lydia Kavraki et al. Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces. Vol. 12. International Transactions on Robotics and Automation,
1994.

[69] Lucas Janson et al. “Fast marching tree: A fast marching sampling-based method
for optimal motion planning in many dimensions”. In: The International Journal of
Robotics Research 34.7 (2015), pp. 883–921.

[70] Joshua Bialkowski et al. “Efficient collision checking in sampling-based motion planning
via safety certificates”. In: The International Journal of Robotics Research 35.7 (2016),
pp. 767–796.

[71] Brett T Lopez and Jonathan P How. “Aggressive collision avoidance with limited
field-of-view sensing”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2017, pp. 1358–1365.

[72] Sikang Liu et al. “High speed navigation for quadrotors with limited onboard sensing”.
In: IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2016,
pp. 1484–1491.

[73] Jing Chen, Tianbo Liu, and Shaojie Shen. “Online generation of collision-free trajecto-
ries for quadrotor flight in unknown cluttered environments”. In: IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2016, pp. 1476–1483.

[74] Ji Zhang et al. “P-CAP: Pre-computed Alternative Paths to Enable Aggressive Aerial
Maneuvers in Cluttered Environments”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 8456–8463.

[75] Federico Augugliaro, Angela P Schoellig, and Raffaello D’Andrea. “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex programming
approach”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2012, pp. 1917–1922.

[76] Tobias Nägeli et al. “Real-time motion planning for aerial videography with dynamic
obstacle avoidance and viewpoint optimization”. In: IEEE Robotics and Automation
Letters 2.3 (2017), pp. 1696–1703.

[77] Mark W Mueller, Markus Hehn, and Raffaello D’Andrea. “A computationally efficient
motion primitive for quadrocopter trajectory generation”. In: IEEE Transactions on
Robotics 31.6 (2015), pp. 1294–1310.

[78] Steven LaValle. Planning algorithms. Cambridge university press, 2006.

[79] Daniel Mellinger and Vijay Kumar. “Minimum snap trajectory generation and con-
trol for quadrotors”. In: IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2011, pp. 2520–2525.

[80] Nathan Bucki, Junseok Lee, and Mark W Mueller. “Rectangular pyramid partitioning
using integrated depth sensors (RAPPIDS): A fast planner for multicopter navigation”.
In: IEEE Robotics and Automation Letters 5.3 (2020), pp. 4626–4633.

BIBLIOGRAPHY 99

[81] Helen Oleynikova et al. “Continuous-time trajectory optimization for online UAV re-
planning”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2016, pp. 5332–5339.

[82] Fei Gao, Yi Lin, and Shaojie Shen. “Gradient-based online safe trajectory generation
for quadrotor flight in complex environments”. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 3681–3688.

[83] Jesus Tordesillas, Brett T Lopez, and Jonathan P How. “FaSTraP: Fast and Safe Tra-
jectory Planner for Flights in Unknown Environments”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2019.

[84] Pete Florence, John Carter, and Russ Tedrake. “Integrated perception and control at
high speed: Evaluating collision avoidance maneuvers without maps”. In: Workshop
on the Algorithmic Foundations of Robotics (WAFR). 2016.

[85] Larry Matthies et al. “Stereo vision-based obstacle avoidance for micro air vehicles
using disparity space”. In: IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2014, pp. 3242–3249.

[86] Ji Zhang et al. “Maximum Likelihood Path Planning for Fast Aerial Maneuvers and
Collision Avoidance”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2019.

[87] Andrew J Barry and Russ Tedrake. “Pushbroom stereo for high-speed navigation in
cluttered environments”. In: IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2015, pp. 3046–3052.

[88] Peter R Florence et al. “Nanomap: Fast, uncertainty-aware proximity queries with
lazy search over local 3d data”. In: IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2018, pp. 7631–7638.

[89] Markus Ryll et al. “Efficient Trajectory Planning for High Speed Flight in Un-
known Environments”. In: IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2019, pp. 732–738.

[90] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal motion
planning”. In: The International Journal of Robotics Research 30.7 (2011), pp. 846–
894.

[91] Titus Cieslewski, Elia Kaufmann, and Davide Scaramuzza. “Rapid exploration with
multi-rotors: A frontier selection method for high speed flight”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 2135–
2142.

[92] Ximin Lyu et al. “Design and implementation of a quadrotor tail-sitter vtol uav”.
In: IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2017,
pp. 3924–3930.

	Contents
	Introduction
	Quadcopter Applications
	Quadcopter Design
	Quadcopter Limitations
	Dissertation Outline

	Quadcopter Dynamics and Control
	Notation
	Model
	Dynamics
	Control

	Enhanced Disturbance Rejection via Angular Momentum
	Introduction
	Dynamics
	System Analysis and Design
	Control
	Experimental Validation
	Conclusion

	Improved Operational Capabilities via Aerial Morphing
	Introduction
	System Model
	Control
	Experimental Vehicle Design
	Experimental Results
	Conclusion

	Computationally Efficient Trajectory Generation in Known Environments
	Introduction
	System model
	Algorithm for Static Obstacle Collision Detection
	Performance Measures
	Dynamic Obstacle Collision Detection
	Experimental Results
	Conclusion

	Computationally Efficient Trajectory Generation in Unknown Environments
	Introduction
	System Model and Relevant Properties
	Algorithm Description
	Algorithm Performance
	Experimental Results
	Conclusion

	Conclusions and Future Work
	Future Work

	Bibliography

