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Abstract— This paper proposes a universal adaptive controller
for quadcopters, which can be deployed zero-shot to quadcopters
of very different mass, arm lengths and motor constants, and
also shows rapid adaptation to unknown disturbances during
runtime. The core algorithmic idea is to learn a single policy
that can adapt online at test time not only to the disturbances
applied to the drone, but also to the robot dynamics and
hardware in the same framework. We achieve this by training
a neural network to estimate a latent representation of the
robot and environment parameters, which is used to condition
the behaviour of the controller, also represented as a neural
network. We train both networks exclusively in simulation with
the goal of flying the quadcopters to goal positions and avoiding
crashes to the ground. We directly deploy the same controller
trained in the simulation without any modifications on two
quadcopters with differences in mass, inertia, and maximum
motor speed of up to 4 times. In addition, we show rapid
adaptation to sudden and large disturbances (up to 35.7%)
in the mass and inertia of the quadcopters. We perform an
extensive evaluation in both simulation and the physical world,
where we outperform a state-of-the-art learning-based adaptive
controller and a traditional PID controller specifically tuned
to each platform individually. Video results can be found
at https://youtu.be/3yQrDML5aWs.

I. INTRODUCTION

In this paper, we show the first universal controller for
quadcopters. Quadcopters are inherently unstable and require
high-frequency control of up to 500hz. Failure to adapt to
perturbations within fractions of a second can potentially
lead to a crash. Consequently, a universal controller should
not only be able to handle diverse perturbations, it should
do so very fast. In this work, we learn a single controller
which is capable of controlling a variety of quadcopters with
differences in mass, armlength, maximum motor speed, etc.
of up to 4 times within 0.8 second, without any modification
or fine-tuning for the specific quadcopters. In addition, our
controller can rapidly adapt to unknown disturbances in
the mass and inertia changes of the quadcopters. Our work
builds on three main insights. The first is that the dynamics
parameters are observable from the history of states and
actions. This has long been known in the community: several
works have shown how to estimate parameters online with
filters [1], [2] or with neural networks [3]. Yet, prior work
overlooked the possibility of using these estimates to condition
the controller’s behaviour. The second insight is that, at test
time, we do not need an estimate of the parameters in some
"ground truth" sense. What matters is that the estimate leads
to the "right" action, which our end-to-end training procedure
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Fig. 1: Demonstration of our adaptive controller on two quadrotors
with widely varying mass, arm length, and motor constants for the
task of tracking a straight and circular trajectory. In the middle of the
trajectory, we add a payload unknown to the drone of approximately
30% of the robot’s mass. Our end-to-end controller is able to quickly
estimate and react to the disturbance. In both the demonstrations
described above and all the simulation and real-world experiments
presented here, we use a single control policy across different drones
and tasks, which is deployed without any modifications or tuning.

optimizes. This simplifies the estimation problem and avoids
identifiability issues, e.g., identical effects on unobservable
or unmatched uncertainties [4]. The third and final insight
is that a system can adapt to previously unseen disturbances
as long as their effect on the platform dynamics is in the
convex hull of the training disturbances (e.g., a motor losing
efficiency has a similar effect to adding a payload below the
motor).

To operationalize this, we follow the approach initially
proposed for legged robots [5]. However, while this work
performs online adaptation to terrains, we use their approach
to adapt to a diverse set of quadcopter bodies and pertur-
bations. Specifically, we estimate a latent representation of
the quadcopter’s body from a history of sensor observations
and actions, which conditions the behaviour of the controller.
The space of quadcopter properties in which we train is
extremely diverse (Table I). This diversity enables adaptation
to sudden changes in environment conditions, e.g., a payload,
for which it was not explicitly trained. Our approach frees
drone designers from the estimation and tuning process
required any time something changes, or the risk that
parameter changes unwittingly cause the control behaviour
to significantly change, potentially endangering the system.
Furthermore, it naturally lends itself for use in off-the-shelf
autopilot systems, allowing users who might otherwise lack
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Fig. 2: We show the training at the top and the deployment
architecture of our system. We train in two phases. In the first
phase, we train a base policy π which takes the current state
xt, and the intrinsics vector zt which is a compressed version
of the environment parameters et generated by the module µ.
Since we cannot deploy this policy in the real world because
we do not observe the environment parameters et, we learn an
adaptation module which takes the sensor history and action
history, and directly predicts the intrinsics vector zt. This is
done in phase two in simulation using supervised learning.
We can finally deploy the base policy π which takes as input
the current state xt and the intrinsics vector ẑt predicted by
the adaptation module ϕ.

the modelling abilities to control a custom vehicle, simply
by plugging in the autopilot and not requiring any parameter
tuning.

Our approach is related to existing methods in adaptive
control. However, our work shifts the meaning of adaptation
to a different paradigm. While adaptive control is generally
concerned with estimating and counteracting disparities be-
tween observations and a reference model, our approach does
not have this notion. This key difference enables adaptation to
a much wider range of dynamics and disturbances. In addition,
it waives the engineering and tuning required by prior work
when modifying the vehicle. Meta-learning is also related to
the context of our problem in providing fast online adaptation.
Although they have been demonstrated on real quadcopters
with impressive results on disturbance rejection [6], [7], they
require real world learning samples to adapt. When adapting
to a much wider scale in our problem setting, this approach
could be potentially dangerous for a dynamic system like a
quadcopter, since failure to adapt quickly leads to catastrophic
failure (a crash). The closest related to our work are industrial
systems like Beta-Flight [8] and PX4 [9]. While they work
well across a variety of vehicles, they still require significant
in-flight tuning for each robot type and are generally tailored
to human pilots.

II. RELATED WORK

The design of high-performance adaptive controllers for
aerospace systems has been a top priority for researchers and

industry for more than 50 years. While the overall goal
remained the same over the decades, approaches greatly
evolved. In the following, we review both traditional and
learning-based solutions to adaptive control. While each
method has its advantages and limitations, they are mainly
designed to handle model uncertainties and disturbances. We
are interested in exploring a much wider range of adaptations,
with substantial differences between platforms.

A. Traditional Adaptive Control

One of the initial contributions in this space is the model
reference adaptive controller (MRAC), an extension of the
well-known MIT-rule [10]. The empirical success of this
method sparked great interest in the aerospace community,
which led to the development of both practical tools and
theoretical foundations [11], [12]. From the many methods
developed, one of the most popular is L1 adaptive control [13],
[4]. The main reason behind its success is the ability to
provide rapid adaptation to model uncertainties and distur-
bances with theoretical guarantees under (possibly restrictive)
assumptions. Its high-level working principle consists of
estimating the differences between the nominal (as predicted
by the reference model) and observed state transitions. Such
differences are then compensated by allocating a control
authority proportional to the disturbance, effectively driving
the system to its reference behaviour. Applications of L1
adaptive controllers span several types of aerial vehicles,
from multi-rotors to fixed wings [14], [15].

Mostly related to this work is the application of L1 adaptive
control to quadcopters [16]. However, the performance of
the classic L1 formulation degrades whenever the observed
transitions differ greatly from the (usually linear) reference
model, which can happen due to aerodynamic effects or large
payloads. Therefore, recent work has combined L1 adaptive
control with nonlinear online optimization [17], [18], [19].
While these methods achieved impressive results, they still
require explicit knowledge of (reference) system parameters,
such as inertia, mass, and motor characteristics. In addition,
they generally require platform-specific tuning to get the
desired behaviour. Other approaches to adaptive control on
quadcopters include differential flatness [20] and nonlinear
dynamic inversion [21]. These methods have shown rapid
adaptation to aerodynamic effects and model uncertainties.
However, they cannot cope with large variations in the
quadcopter’s dynamics, since the underlying assumptions
on locally linear disturbances are generally not fulfilled.

B. Learning-Based Adaptive Control

Recent data-driven controllers have shown promising re-
sults for quadcopter stabilization [22], [23], or waypoint track-
ing flight [24], [25]. As their classic counterparts, learning-
based controllers also allow for adaptation to disturbances
and model mismatches. One possibility to do so consists of
learning a model from the data and using the model to adapt
the controller [26], [27], [6], [28]. However, this has the
limitation that the models are difficult to carefully identify
due to under-actuation of the platform and sensing noise.



This motivated model-free methods that, like ours, learn an
end-to-end adaptive policy [29]. Meta-learning has also been
proposed to augment the performance of the model-based
controller for fast online adaptation to wind [7] or suspended
payloads [6]. These methods achieved impressive results
in disturbance rejection. However, they are still tailored to
a specific platform type, and lack an explicit mechanism
for adaptation to drastic changes in the drone’s model and
actuation. Our work aims to fill this gap and create a single
control policy capable of flying vehicles with vastly varying
physical characteristics and under large disturbances.

III. LEARNING A UNIVERSAL ADAPTIVE DRONE
CONTROLLER

We learn a universal controller to fly a quadcopter to a target
position. This controller takes a history of platform states and
commands from a platform-independent high level controller
as inputs, and outputs individual motor speed. Our resulting
policy can control quadcopters with very different design and
hardware characteristics, and is robust to disturbances unseen
at training time, such as swing payloads and malfunctioned
motors.

To achieve this, we use RMA [5]. However, we re-purpose
the adaption module, originally used to estimate parameters
external to the robot, e.g. friction, to estimate the robot’s
intrinsic parameters (e.g. its mass, inertia, motor constant,
etc.) In the following, we recapitulate the method of RMA
for completeness. Our policy consists of a base policy π
and an adaptation module ϕ. The base policy π takes the
current state xt ∈ R23 and an intrinsics vector zt ∈ R6 as
input and outputs the target motor speed at ∈ R4 for all
individual motors. The intrinsics vector zt allows the base
policy to adapt to variations in drone parameters, payloads,
and disturbances such as wind. Since we cannot directly
measure zt in the real world, we instead estimate it via the
adaptation module ϕ, which uses the discrepancy between
the commanded actions and the measured sensor readings to
estimate it online during deployment. More concretely,

ẑt = ϕ
(
xt−k:t−1, at−k:t−1

)
(1)

at = π(xt, ẑt) (2)

A. Base Policy

We learn the base policy π in simulation using model-
free RL. The base policy takes the current state xt and
the intrinsics vector zt, which is a compressed version of
the environment parameters et containing drone parameters,
payload, etc. We use the network µ to compress et to zt.
This gives us:

zt = µ(et) (3)
at = π(xt, zt) (4)

We implement µ and π as MLPs and jointly train the base
policy π and the environmental factor encoder µ end to end
using model-free reinforcement learning. RL maximizes the

Parameters Training Range Testing Range

Mass (kg) [0.142, 0.950] [0.114, 1.140]
Arm length (m) [0.046, 0.200] [[0.037, 0.240]
Mass moment of inertia [7.42e-5 , 5.60e-3] [5.94e-5 , 6.72e-3]
around x, y (kg·m2)
Mass moment of inertia [1.20e-4, 8.80e-3] [9.60e-5, 1.06e-2]
around z (kg·m2)
Propeller constant κ (m) [0.0041, 0.0168] [0.0033, 0.0201]
Payload (% of Mass) [10, 50] [5, 60]
Payload Location

[-10, 10] [-10, 10]from Center of Mass
(% of Arm length)
Motor Constant [1.15e-7, 7.64e-6] [9.16e-8, 9.17e-6]
Body drag coefficient [0, 0.62] [0, 0.74]
Max. motor speed (rad/s) [707, 4895] [566, 5874]

TABLE I: Ranges of the drone and environmental parameters.
Parameters without units labelled are dimensionless quantities.

following expected return of the policy π:

J(π) = Eτ∼p(τ |π)

[
T−1∑
t=0

γtrt

]
, (5)

where τ = {(x0, a0, r0), (x1, a1, r1)...} is the trajectory of
the agent when executing the policy π, and p(τ |π) represents
the likelihood of the trajectory under π.

a) RL Reward: The following reward function encour-
ages the agent to hover at a goal position and penalizes
it for crash and oscillating motions. Let us denote the
acceleration in the z-axis i.e. the mass-normalized thrust
as c, the angular velocity as ω, all in the quadcopter’s body
frame. The commanded mass-normalized thrust is defined
as cdes, commanded angular velocity as ωdes, all given by
the high-level controller. We additionally define the motor
speed as m and the simulation step in the training as δt.
The reward at time t is defined as the sum of the following
quantities:

1) Angular Velocity Tracking : −∥ωt − ωt
des∥

2) Z Acceleration Tracking: −∥ct − ctdes∥
3) Output Command Smoothness: −∥mt −mt−1∥
4) Survive: δt

The scaling factor of each reward term is 0.01, 0.02, 0.0002,
1 respectively.

B. Adaptation Module

During deployment, we do not have access to the vector
et and hence we cannot compute the intrinsics vector z.
Instead, we will use the sensor and action history to directly
estimate zt as proposed in [5]. We call this module the
adaptation module ϕ, and we will train this in simulation
itself at = π(xt, ẑt). We can train this module in simulation
using supervised learning because we have access to both the
ground truth intrinsics zt, and the sensor history and previous
actions. We minimize the mean squared error loss ∥z − ẑ∥2.

C. Deployment

We directly deploy the base policy π which uses the current
state and the intrinsics vector ẑ predicted by the adaptation



module ϕ. We do not calibrate or finetune our policy on any
drones and use the same policy without any modifications as
the controller of the different drones under different payload
and conditions.

IV. EXPERIMENTAL SETUP

Simulation Environment. We use the Flightmare simula-
tor [30] for training and testing our control policies. We
implement a custom high-level controller to generates high-
level commands at the level of body rates and collective thrust.
It is designed as a cascaded linear acceleration controller
(with desired acceleration mimicking a spring-mass-damper
system with natural frequency 2rad/s and damping ratio 0.7.
The desired acceleration is then converted to a desired total
thrust and the desired thrust direction, and the body rates
are computed from this as proportional to the attitude error
angle, with a time constant of 0.2s. We define the task as
hovering at a pre-defined location. This high-level controller’s
inputs are the platform’s state (position, rotation, angular, and
linear velocities) and the goal location. The policy outputs
individual motor speed commands, and we model the motors’
response using a first-order system. Each RL episode lasts for
a maximum of 5s of simulated time, with early termination if
the quadcopter height drops below 2cm. The control frequency
of the policy is 500Hz, and the simulation step is 2ms. We
additionally implement an observation latency of 10ms.

Quadcopter and Environment Randomization. All our
training and testing ranges are listed in Table I. Of these, et
includes mass, arm length, propeller torque to thrust ratio κ,
motor constant, inertia (9dim), body drag coefficients (3dim),
maximum motor rotation and payload mass, which results in
an 18-dim vector. We randomize each of these parameters at
the end of each episode. In addition, at a randomly sampled
time during each episode, the parameters including mass,
inertia, and the Center of Mass are also randomized. The
latter is used to mimic sudden variations in the quadcopter
parameters due to a sudden disturbance caused by a payload
or wind.

Hardware Details. For all our real-world experiments we
use two quadcopters, which differ in mass by a factor of
4.5, and in size by a factor of 2.9. The first one, which we
name largequad has a mass of 792g, a size of 16.6cm in
arm length, a thrust-to-weight ratio of 3.50, a diagonal inertia
matrix of [0.0047, 0.005, 0.0074]kg·m2 (as expressed in the
z-up body-fixed frame), and a maximum motor speed of
943rad/s. The second one, miniquad, has a mass of 177g, a
size of 5.8cm in arm length, a thrust-to-weight ratio of 3.45, a
diagonal inertia matrix of [92.7e-6, 92.7e-6, 158.57e-6]kg·m2,
and a maximum motor speed of 3916rad/s. A motion capture
system running at 200Hz provides estimates of the drone
position and orientation, which is followed by a Kalman filter
to reduce noise and estimate linear velocity. An onboard
rate gyroscope measures the angular rotation of the robot,
which is low-pass filtered to reduce noise and remove outliers.
The deployed policy outputs motor speed commands, which
are subsequently tracked by off-the-shelf electronic speed

Fig. 3: Upper Left: Large and small quadcopters mounted
with an inertia board. For the large quadcopter, we mount
a wrench of 20.5cm and 140g. For the small quadcopter, a
wrench of 14.5cm and 30g. Upper Right: Large and small
quadcopters with a rigid payload. For the former, we add a
load of 180g (≈ 25% of its weight). For the latter, we add a
load of 50g, which corresponds to 35.7% of its weight. Lower
Left: Large and small quadcopters with random pushes/pulls.
Lower Right: Large and small quadcopters with a swing
payload, which is the wrench in the inertia board test. Despite
such large disturbances unknown to the control policy, our
approach can always stabilize the quadcopter.

controllers. We use as high-level a PD controller which takes
as input the goal position and outputs the mass normalized
collective trust and the body rates.

Network Architecture and Training Procedure. The base
policy is a 3-layer Multi-layer perceptron (MLP) with 256-
dim hidden layers. This takes the drone state and the vector of
intrinsics as input to produce motor speeds. The environment
factor encoder is a 2-layer MLP with 128-dim hidden layers.
The policy and the value function share the same factor
encoding layer. The adaptation module projects the latest
400 state-action pairs into a 128-dim representation. Then, a
3-layer 1-D CNN convolves the representation across time.
The flattened CNN output is linearly projected to estimate
zt. We train the base policy and the environment encoder
using PPO [31] for 100M steps. We use the reward outlined
in Section III. Policy training takes approximately 2 hours on
an ordinary desktop machine with 1 GPU. We finally train
the adaptation module with supervised learning by rolling
out the student policy. We train with the ADAM optimizer
to minimize MSE loss. We run the optimization process
for 10M steps, training on data collected over the last 1M
steps. Training the adaptation module takes approximately
20 minutes.

V. RESULTS

A. Real World Deployment

We test our approach in the physical world and compare
its performance to two baselines: LTF, which is a learning-
based robust controller trained with an error integration as
one of inputs [32]; and a platform-specific PID controller.
The PID controller has access to the platform’s mass and
inertia, and it has been specifically tuned to the platform with
in-flight tests. In contrast, our approach has no knowledge
whatsoever of the physical characteristics of the system
and requires no calibration or real-world fine tuning. We



Vehicle Method
Height Ang. Vel. Thrust Success

Err. (m) Err. (rad/s) Err. (m/s2) Rate

Free
Hover

small
PID 0.06 0.51 0.57 100

LTF [32] 0.09 0.78 0.78 80

Ours 0.05 0.30 0.30 100

large
PID 0.01 0.12 0.28 100

LTF [32] 0.03 1.21 1.86 80

Ours 0.03 0.19 0.36 100

Inertial
Board

small
PID - - - 0

LTF [32] - - - 0

Ours 0.08 1.14 1.09 100

large
PID 0.31 0.37 1.46 100

LTF [32] - - - 0

Ours 0.08 0.24 1.35 100

Payload

small
PID 0.40 1.14 2.20 80

LTF [32] 0.10 0.98 2.14 100

Ours 0.05 0.88 0.51 100

large
PID 0.19 1.14 1.21 100

LTF [32] 0.06 1.01 4.2 100

Ours 0.04 0.34 1.19 100

TABLE II: Real-World Results: We compare the perfor-
mance of our controller to two baselines: LTF and a PID
controller. The comparison is run on three tasks for large and
small quadcopters. Free Hover: hover at the goal position
without any disturbances. Inertia Board: hover at the goal
position under an unknown mass and inertia disturbance.
Payload: hover at the goal position under an unknown mass
disturbance. Metrics are averaged over 5 experiments.

compare the task of stabilization to a predefined set point
without any disturbances (free hover), or under an unknown
mass and/or inertia disturbance (Figure 3). We compare the
three approaches under four metrics: (i) the average height
error to the goal point, and the average tracking error of
the (ii) angular velocity and (iii) mass normalized thrust
of the high-level controller’s commands, and the success
rate. We define a failure if the human operator had to
intervene to avoid the quadcopter from crashing. The results
of these experiments are reported in table II. Our approach
significantly outperforms both baselines in all metrics under
all disturbances. In particular, our approach achieves a 100%
success rate when asymmetric disturbances are applied to
the system, while the two baselines both experience at least
one total failure on either of the two platforms. The PID
baseline and our approach performs similarly in free hovering
experiment, with the PID controller slightly outperforming
ours on largequad. The latter difference in performance is
justified, since the PID controller is specifically tuned for
each quadcopter, but ours does not have knowledge of the
system dynamics and hardware.

Success Height Ang. Vel. Thrust
Rate Err. (m) Err. (rad/s) Err. (m/s2)

Robust [33], [34] 18% 0.44 1.32 1.93
SysID [35] 38% 0.19 1.10 1.38
LTF [32] 59% 0.35 0.97 1.68
L1 [17] 59% 0.17 0.92 1.60
Ours 66% 0.09 0.94 1.57

Expert (Phase I) 69% 0.09 0.91 1.29

TABLE III: Simulation Testing Results: We compare our
method with four baselines on the task of stabilization: Robust,
SysID, LTF, and L1. We also list the results of our method
in Phase I training, which has access to all ground-truth
system parameters and can be regarded as the expert. The
test ranges are defined in Table I. Metrics are averages over
100 experiments.

External Forces Success Height Ang. Vel. Thrust
Rate Err. (m) Err. (rad/s) Err. (m/s2)

Robust [33], [34] 5% 0.39 2.05 1.51
SysID [35] 2% 0.22 1.38 1.23
LTF [32] 32% 0.23 1.53 0.99
L1 [17] 42% 0.30 1.46 1.04
Ours 49% 0.09 1.40 0.85

Partially Failing Motors
Robust [33], [34] 1% 0.53 1.94 1.59
SysID [35] 14% 0.33 1.25 1.23
LTF [32] 21% 0.38 1.57 1.35
L1 [17] 33% 0.32 1.41 1.06
Ours 38% 0.26 1.36 1.01

TABLE IV: Simulation Testing Results, Out-of-
Distribution Disturbances: We evaluate the performance
of our method and all baselines on two types of disturbances
unseen at training time. External Forces: We apply a random
force of magnitude uniformly sampled between 0 and 50%
of the weight and with direction uniformly sampled on a
cube. Partially Failing Motors: To simulate a motor losing
efficiency, we multiply the output of a randomly sampled
motor’s thrust force to a random number between 0 and
1. The duration of each disturbance is random between the
entire length of the episode (on and off with 2% probability
at every time stamp).

B. Simulation Results

Finally, we compare our approach with a set of baselines
in the simulation. We select four baselines from prior work:
Robust, which consists of a policy trained without access to
environment factors or body parameters [34], [33]; SysID,
which directly predicts the ground-truth parameters et [35]
instead of the low-dimensional intrinsics vector; LTF, which
essentially is a robust policy with an error integration as
additional inputs [32]; and L1, a model-based adaptive
controller which estimates and compensates the difference
between the nominal and observed states to achieve adaptive
control [13], [4], [17]. We keep the same architecture and
hyperparameters as ours for all learning-based baselines.
Similarly to real-world experiments, we evaluate on the task
of stabilization. The testing ranges are listed in Table I. We
rank the methods according to the success rate, the average
height error, and the tracking performance. At the beginning



Time (s) 

Fig. 4: We analyze the change in behaviour of our policy as
we incrementally add total 290g payloads to our quadcopter.
We plot all 6 components of the intrinsics vector ẑt predicted
by the adaptation module. We see that changes in intrinsics
are strongly correlated with disturbances applied to the
quadcopter, indicating that the added payloads have been
detected by the adaptation module. When the payload is
added, the quadcopter first sinks and then recovers to the
normal motion. The plotted components of the intrinsics
vector change in response to the disturbance, from which we
know the adaptation period takes around 2s.

of each experiment, the quadcopter is spawned with a random
orientation, a random position in x-y of [-1,1] and [0.5, 2.5]
in z, and a random velocity on each axis of [-1,1]. The
experiment is considered successful if the end height of the
quadcopter is within 0.3m from the goal height. The results
of these experiments are reported in Table III. Given the very
large amount of quadcopter variations, the Robust baseline
trained without access to environment parameters has the
lowest success rate and largest tracking error. This is because
it is forced to learn a single conservative flying which can
fly all quadcopters under varying disturbances. Indeed, it
either crashes to the ground or flies outside the flying region.
The baseline LTF is Robust with an additional observation
of error integration. This additional input helps it achieve
higher success rate. However, similar to the Robust baseline,
LTF fails in tracking the goal states. On the contrary, with
access to the environment parameters, the flight performance
strongly increases. Still, explicitly regressing the environment
vector et, instead of its low-dimensional representation zt,
scarifies the success rate since it is trying to solve a harder
estimation problem which is not necessary to solve the task
at hand. Since the tracking errors are computed only for
successful runs, the SysID baseline achieves a slightly lower
tracking error in one of the metrics. L1 is the baseline with
the strongest performance in our simulation experiments.
However, it relies on the explicit knowledge of a reference
model which we choose as the median value of all parameters
in the testing range in Table I, while our method with other

baselines has no prior knowledge of the model. However, L1
is not implemented in our real-world experiments as a baseline
because it is highly sensitive to latency and requires significant
engineering work. In contrast, our approach can handle latency
very well by simulating it during training. We also evaluate the
task of stabilization on held-out environmental disturbances,
as exemplified by random external forces and partial failure
of a motor. The results of these experiments are reported in
Table IV. Our method outperforms all baselines in both out-
of-distribution disturbances cases. Compared to the strongest
baseline L1, our method reduces the failure rate by up to
1.14 times, the average height error by up to 67.7%, and the
average command tracking error by up to 22.4%.

C. Adaptation Analysis

We analyze the estimated intrinsics vector ẑt for adaptation
on incremental payloads. We incrementally add payloads in
total of 290g to the quadcopter in hovering. The quadcopter
adapts successfully to payloads and stabilizes itself at the
target position. We plot all components of the estimated
intrinsics vector from the adaptation module during the
experiment in Figure 4. We find that whenever a payload
is applied, there is a change in all intrinsics components,
indicating that the disturbance has been detected by the
adaptation module. Then the quadcopter recovers from the
disturbance and all components of the intrinsics vector
converges to different values as they are before the payload
is applied. From the change of the plotted components of
intrinsics vector in response to the disturbance, we see that it
takes around 2s for our controller to detect the disturbance,
estimate the intrinsics vector, adapts from the disturbance,
and finally stablizes. The adaptation period of our controller
is much faster than that of methods with online estimation
of ground truth model parameters such as [2], where it takes
10s to 15s in-flight to obtain an accurate model estimate.

VI. CONCLUSION

In this work, we show how a single policy can control
quadcopters of totally different morphology, mass, and actua-
tion. We successfully transfer a method initially developed
for legged locomotion in adapting terrains to quadcopters in
adapting a diverse set of quadcopter bodies and disturbances.
Without any additional tuning or modification, the single
policy trained only in simulation can be deployed zero-shot
to real quadcopters of very different design and hardware
characteristics while showing rapid adaptation to unknown
disturbances at the same time. Adaptive control has achieved
great success in adaptation to model uncertainties and distur-
bances, but our work offers a fresh view on the meaning of
adaptation by completely bypassing the notion of a reference
model that most adaptive control methods use. This feature
enables our method to adapt to a much wider range of robots
and disturbances.
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