A Zero-Shot Adaptive Quadcopter Controller

Dingqi Zhang1, Antonio Loquercio2, Xiangyu Wu1, Ashish Kumar2, Jitendra Malik2, Mark W. Mueller1

Abstract—This paper proposes a universal adaptive controller for quadcopters, which can be deployed zero-shot to quadcopters of very different mass, arm lengths and motor constants, and also shows rapid adaptation to unknown disturbances during runtime. The core algorithmic idea is to learn a single policy that can adapt online at test time not only to the disturbances applied to the drone, but also to the robot dynamics and hardware in the same framework. We achieve this by training a neural network to estimate a latent representation of the robot and environment parameters, which is used to condition the behaviour of the controller, also represented as a neural network. We train both networks exclusively in simulation with the goal of flying the quadcopters to goal positions and avoiding crashes to the ground. We directly deploy the same controller trained in the simulation without any modifications on two quadcopters with differences in mass, inertia, and maximum motor speed of up to 4 times. In addition, we show rapid adaptation to sudden and large disturbances (up to 35.7\%) in the mass and inertia of the quadcopters. We perform an extensive evaluation in both simulation and the physical world, where we outperform a state-of-the-art learning-based adaptive controller and a traditional PID controller specifically tuned to each platform individually. Video results can be found at \url{https://youtu.be/3yQrDML5aWs}

I. INTRODUCTION

In this paper, we show the first universal controller for quadcopters. Quadcopters are inherently unstable and require high-frequency control of up to 500Hz. Failure to adapt to perturbations within fractions of a second can potentially lead to a crash. Consequently, a universal controller should not only be able to handle diverse perturbations, it should do so very fast. In this work, we learn a single controller which is capable of controlling a variety of quadcopters with differences in mass, arm length, maximum motor speed, etc. of up to 4 times within 0.8 second, without any modification or fine-tuning for the specific quadcopters. In addition, our controller can rapidly adapt to unknown disturbances in the mass and inertia changes of the quadcopters. Our work builds on three main insights. The first is that the dynamics parameters are observable from the history of states and actions. This has long been known in the community: several works have shown how to estimate parameters online with filters \cite{1, 2} or with neural networks \cite{3}. Yet, prior work overlooked the possibility of using these estimates to condition the controller’s behaviour. The second insight is that, at test time, we do not need an estimate of the parameters in some "ground truth" sense. What matters is that the estimate leads to the "right" action, which our end-to-end training procedure optimizes. This simplifies the estimation problem and avoids identifiability issues, e.g., identical effects on unobservable or unmatched uncertainties \cite{4}. The third and final insight is that a system can adapt to previously unseen disturbances as long as their effect on the platform dynamics is in the convex hull of the training disturbances (e.g., a motor losing efficiency has a similar effect to adding a payload below the motor).

To operationalize this, we follow the approach initially proposed for legged robots \cite{5}. However, while this work performs online adaptation to terrains, we use their approach to adapt to a diverse set of quadcopter bodies and perturbations. Specifically, we estimate a latent representation of the quadcopter’s body from a history of sensor observations and actions, which conditions the behaviour of the controller. The space of quadcopter properties in which we train is extremely diverse (Table I). This diversity enables adaptation to sudden changes in environment conditions, e.g., a payload, for which it was not explicitly trained. Our approach frees drone designers from the estimation and tuning process required any time something changes, or the risk that parameter changes unwittingly cause the control behaviour to significantly change, potentially endangering the system. Furthermore, it naturally lends itself for use in off-the-shelf autopilot systems, allowing users who might otherwise lack

\hspace{1cm}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Demonstration of our adaptive controller on two quadrotors with widely varying mass, arm length, and motor constants for the task of tracking a straight and circular trajectory. In the middle of the trajectory, we add a payload unknown to the drone of approximately 30\% of the robot’s mass. Our end-to-end controller is able to quickly estimate and react to the disturbance. In both the demonstrations described above and all the simulation and real-world experiments presented here, we use a single control policy across different drones and tasks, which is deployed without any modifications or tuning.}
\end{figure}
II. RELATED WORK

The design of high-performance adaptive controllers for aerospace systems has been a top priority for researchers and industry for more than 50 years. While the overall goal remained the same over the decades, approaches greatly evolved. In the following, we review both traditional and learning-based solutions to adaptive control. While each method has its advantages and limitations, they are mainly designed to handle model uncertainties and disturbances. We are interested in exploring a much wider range of adaptations, with substantial differences between platforms.

A. Traditional Adaptive Control

One of the initial contributions in this space is the model reference adaptive controller (MRAC), an extension of the well-known MIT-rule [10]. The empirical success of this method sparked great interest in the aerospace community, which led to the development of both practical tools and theoretical foundations [11], [12]. From the many methods developed, one of the most popular is L_1 adaptive control [13], [4]. The main reason behind its success is the ability to provide rapid adaptation to model uncertainties and disturbances with theoretical guarantees under (possibly restrictive) assumptions. Its high-level working principle consists of estimating the differences between the nominal (as predicted by the reference model) and observed state transitions. Such differences are then compensated by allocating a control authority proportional to the disturbance, effectively driving the system to its reference behaviour. Applications of L_1 adaptive controllers span several types of aerial vehicles, from multi-rotors to fixed wings [14], [15].

Mostly related to this work is the application of L_1 adaptive control to quadcopters [16]. However, the performance of the classic L_1 formulation degrades whenever the observed transitions differ greatly from the (usually linear) reference model, which can happen due to aerodynamic effects or large payloads. Therefore, recent work has combined L_1 adaptive control with nonlinear online optimization [17], [18], [19]. While these methods achieved impressive results, they still require explicit knowledge of (reference) system parameters, such as inertia, mass, and motor characteristics. In addition, they generally require platform-specific tuning to get the desired behaviour. Other approaches to adaptive control on quadcopters include differential flatness [20] and nonlinear dynamic inversion [21]. These methods have shown rapid adaptation to aerodynamic effects and model uncertainties. However, they cannot cope with large variations in the quadcopter’s dynamics, since the underlying assumptions on locally linear disturbances are generally not fulfilled.

B. Learning-Based Adaptive Control

Recent data-driven controllers have shown promising results for quadcopter stabilization [22], [23], or waypoint tracking flight [24], [25]. As their classic counterparts, learning-based controllers also allow for adaptation to disturbances and model mismatches. One possibility to do so consists of learning a model from the data and using the model to adapt the controller [26], [27], [6], [28]. However, this has the limitation that the models are difficult to carefully identify due to under-actuation of the platform and sensing noise.
This motivated model-free methods that, like ours, learn an end-to-end adaptive policy [29]. Meta-learning has also been proposed to augment the performance of the model-based controller for fast online adaptation to wind [7] or suspended payloads [6]. These methods achieved impressive results in disturbance rejection. However, they are still tailored to a specific platform type, and lack an explicit mechanism for adaptation to drastic changes in the drone’s model and actuation. Our work aims to fill this gap and create a single control policy capable of flying vehicles with vastly varying physical characteristics and under large disturbances.

III. LEARNING A UNIVERSAL ADAPTIVE DRONE CONTROLLER

We learn a universal controller to fly a quadcopter to a target position. This controller takes a history of platform states and commands from a platform-independent high level controller as inputs, and outputs individual motor speed. Our resulting policy can control quadcopters with very different design and hardware characteristics, and is robust to disturbances unseen at training time, such as swing payloads and malfunctioned motors. To achieve this, we use RMA [5]. However, we re-purpose the adaptation module, originally used to estimate parameters external to the robot, e.g. friction, to estimate the robot’s intrinsic parameters (e.g. its mass, inertia, motor constant, etc.) In the following, we recapitulate the method of RMA for completeness. Our policy consists of a base policy π and an adaptation module ϕ. The base policy π takes the current state $x_t \in \mathbb{R}^{23}$ and an intrinsics vector $z_t \in \mathbb{R}^6$ as input and outputs the target motor speed $a_t \in \mathbb{R}^4$ for all individual motors. The intrinsics vector z_t allows the base policy to adapt to variations in drone parameters, payloads, and disturbances such as wind. Since we cannot directly measure z_t in the real world, we instead estimate it via the adaptation module ϕ, which uses the discrepancy between the commanded actions and the measured sensor readings to estimate it online during deployment. More concretely,

$$\dot{z}_t = \dot{\phi}(x_{t-k+1}, a_{t-k+1})$$

$$a_t = \pi(x_t, \hat{z}_t)$$

A. Base Policy

We learn the base policy π in simulation using model-free RL. The base policy takes the current state x_t and the intrinsics vector z_t, which is a compressed version of the environment parameters e_t containing drone parameters, payload, etc. We use the network μ to compress e_t to z_t. This gives us:

$$z_t = \mu(e_t)$$

$$a_t = \pi(x_t, z_t)$$

We implement μ and π as MLPs and jointly train the base policy π and the environmental factor encoder μ end to end using model-free reinforcement learning. RL maximizes the following expected return of the policy π:

$$J(\pi) = \mathbb{E}_{r \sim p(\tau|\pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right],$$

where $\tau = \{ (x_0, a_0, r_0), (x_1, a_1, r_1), \ldots \}$ is the trajectory of the agent when executing the policy π, and $p(\tau|\pi)$ represents the likelihood of the trajectory under π.

1) RL Reward: The following reward function encourages the agent to hover at a goal position and penalizes it for crash and oscillating motions. Let us denote the acceleration in the z-axis i.e. the mass-normalized thrust as c, the angular velocity as ω, all in the quadcopter’s body frame. The commanded mass-normalized thrust is defined as c_{des}, commanded angular velocity as ω_{des}, all given by the high-level controller. We additionally define the motor speed as m and the simulation step in the training as δt. The reward at time t is defined as the sum of the following quantities:

1) Angular Velocity Tracking: $-||\omega^t - \omega_{des}^t||$

2) Z Acceleration Tracking: $-||c^t - c_{des}^t||$

3) Output Command Smoothness: $-||m^t - m^{t-1}||$

4) Survive: δt

The scaling factor of each reward term is 0.01, 0.02, 0.0002, 1 respectively.

B. Adaptation Module

During deployment, we do not have access to the vector e_t and hence we cannot compute the intrinsics vector z. Instead, we will use the sensor and action history to directly estimate z_t as proposed in [5]. We call this module the adaptation module ϕ, and we will train this in simulation itself $a_t = \pi(x_t, \hat{z}_t)$. We can train this module in simulation using supervised learning because we have access to both the ground truth intrinsics z_t, and the sensor history and previous actions. We minimize the mean squared error loss $||z - \hat{z}||^2$.

C. Deployment

We directly deploy the base policy π which uses the current state and the intrinsics vector \hat{z} predicted by the adaptation module.
module ϕ. We do not calibrate or finetune our policy on any drones and use the same policy without any modifications as the controller of the different drones under different payload and conditions.

IV. EXPERIMENTAL SETUP

Simulation Environment. We use the Flightmare simulator [30] for training and testing our control policies. We implement a custom high-level controller to generates high-level commands at the level of body rates and collective thrust. It is designed as a cascaded linear acceleration controller (with desired acceleration mimicking a spring-mass-damper system with natural frequency 2rad/s and damping ratio 0.7. The desired acceleration is then converted to a desired total thrust and the desired thrust direction, and the body rates are computed from this as proportional to the attitude error angle, with a time constant of 0.2s. We define the task as hovering at a pre-defined location. This high-level controller’s inputs are the platform’s state (position, rotation, angular, and linear velocities) and the goal location. The policy outputs individual motor speed commands, and we model the motors’ response using a first-order system. Each RL episode lasts for a maximum of 5s of simulated time, with early termination if the quadcopter height drops below 2cm. The control frequency of the policy is 500Hz, and the simulation step is 2ms. We additionally implement an observation latency of 10ms.

Quadcopter and Environment Randomization. All our training and testing ranges are listed in Table I. Of these, e_t includes mass, arm length, propeller torque to thrust ratio κ, motor constant, inertia (9dim), body drag coefficients (3dim), maximum motor rotation and payload mass, which results in an 18-dim vector. We randomize each of these parameters at the end of each episode. In addition, at a randomly sampled time during each episode, the parameters including mass, inertia, and the Center of Mass are also randomized. The latter is used to mimic sudden variations in the quadcopter parameters due to a sudden disturbance caused by a payload or wind.

Hardware Details. For all our real-world experiments we use two quadcopters, which differ in mass by a factor of 4.5, and in size by a factor of 2.9. The first one, which we name largequad has a mass of 792g, a size of 16.6cm in arm length, a thrust-to-weight ratio of 3.50, a diagonal inertia matrix of $[0.0047, 0.005, 0.0074]$kg·m2 (as expressed in the z-up body-fixed frame), and a maximum motor speed of 943rad/s. The second one, miniquad, has a mass of 177g, a size of 5.8cm in arm length, a thrust-to-weight ratio of 3.45, a diagonal inertia matrix of $[92.7e-6, 92.7e-6, 158.57e-6]$kg·m2, and a maximum motor speed of 3916rad/s. A motion capture system running at 200Hz provides estimates of the drone position and orientation, which is followed by a Kalman filter to reduce noise and estimate linear velocity. An onboard rate gyroscope measures the angular rotation of the robot, which is low-pass filtered to reduce noise and remove outliers. The deployed policy outputs motor speed commands, which are subsequently tracked by off-the-shelf electronic speed controllers. We use as high-level a PD controller which takes as input the goal position and outputs the mass normalized collective trust and the body rates.

Network Architecture and Training Procedure. The base policy is a 3-layer Multi-layer perceptron (MLP) with 256-dim hidden layers. This takes the drone state and the vector of intrinsics as input to produce motor speeds. The environment factor encoder is a 2-layer MLP with 128-dim hidden layers. The policy and the value function share the same factor encoding layer. The adaptation module projects the latest 400 state-action pairs into a 128-dim representation. Then, a 3-layer 1-D CNN convolves the representation across time. The flattened CNN output is linearly projected to estimate z_t. We train the base policy and the environment encoder using PPO [31] for 100M steps. We use the reward outlined in Section III. Policy training takes approximately 2 hours on an ordinary desktop machine with 1 GPU. We finally train the adaptation module with supervised learning by rolling out the student policy. We train with the ADAM optimizer to minimize MSE loss. We run the optimization process for 10M steps, training on data collected over the last 1M steps. Training the adaptation module takes approximately 20 minutes.

V. RESULTS

A. Real World Deployment

We test our approach in the physical world and compare its performance to two baselines: LITF, which is a learning-based robust controller trained with an error integration as one of inputs [32]; and a platform-specific PID controller. The PID controller has access to the platform’s mass and inertia, and it has been specifically tuned to the platform with in-flight tests. In contrast, our approach has no knowledge whatsoever of the physical characteristics of the system and requires no calibration or real-world fine tuning. We...
TABLE II: Real-World Results: We compare the performance of our controller to two baselines: \textit{LTF} and a PID controller. The comparison is run on three tasks for large and small quadcopters. \textbf{Free Hover}: hover at the goal position without any disturbances. \textbf{Inertial Board}: hover at the goal position under an unknown mass and inertia disturbance. \textbf{Payload}: hover at the goal position under an unknown mass disturbance. Metrics are averaged over 5 experiments.

TABLE III: Simulation Testing Results: We compare our method with four baselines on the task of stabilization: \textit{Robust}, \textit{SysID}, \textit{LTF}, and \mathcal{L}_1. We also list the results of our method in Phase I training, which has access to all ground-truth system parameters and can be regarded as the expert. The test ranges are defined in Table I. Metrics are averages over 100 experiments.

TABLE IV: Simulation Testing Results, Out-of-Distribution Disturbances: We evaluate the performance of our method and all baselines on two types of disturbances unseen at training time. \textbf{External Forces}: We apply a random force of magnitude uniformly sampled between 0 and 50\% of the weight and with direction uniformly sampled on a cube. \textbf{Partially Failing Motors}: To simulate a motor losing efficiency, we multiply the output of a randomly sampled motor’s thrust force to a random number between 0 and 1. The duration of each disturbance is random between the entire length of the episode (on and off with 2\% probability at every time stamp).

\textbf{B. Simulation Results}

Finally, we compare our approach with a set of baselines in the simulation. We select four baselines from prior work: \textit{Robust}, which consists of a policy trained without access to environment factors or body parameters [34], [33]; \textit{SysID}, which directly predicts the ground-truth parameters \(e_i\) [35] instead of the low-dimensional intrinsics vector; \textit{LTF}, which essentially is a robust policy with an error integration as additional inputs [32]; and \mathcal{L}_1, a model-based adaptive controller which estimates and compensates the difference between the nominal and observed states to achieve adaptive control [13], [4], [17]. We keep the same architecture and hyperparameters as ours for all learning-based baselines. Similarly to real-world experiments, we evaluate on the task of stabilization. The testing ranges are listed in Table I. We rank the methods according to the success rate, the average height error, and the tracking performance. At the beginning
We plot all 6 components of the intrinsics vector \(\hat{z} \) predicted by the adaptation module. We see that changes in intrinsics are strongly correlated with disturbances applied to the quadcopter, indicating that the added payloads have been detected by the adaptation module. When the payload is added, the quadcopter first sinks and then recovers to the normal motion. The plotted components of the intrinsics vector change in response to the disturbance, from which we know the adaptation period takes around 2s.

Each experiment, the quadcopter is spawned with a random orientation, a random position in x-y of [-1,1] and [0.5, 2.5] in z, and a random velocity on each axis of [-1,1]. The experiment is considered successful if the end height of the quadcopter is within 0.3m from the goal height. The results of these experiments are reported in Table III. Given the very large amount of quadcopter variations, the Robust baseline trained without access to environment parameters has the lowest success rate and largest tracking error. This is because it is forced to learn a single conservative flying which can fly all quadcopters under varying disturbances. Indeed, it either crashes to the ground or flies outside the flying region. The baseline LTF is Robust with an additional observation of error integration. This additional input helps it achieve a higher success rate. However, similar to the Robust baseline, LTF fails in tracking the goal states. On the contrary, with access to the environment parameters, the flight performance strongly increases. Still, explicitly regressing the environment vector \(e_t \), instead of its low-dimensional representation \(z_t \), scarifies the success rate since it is trying to solve a harder estimation problem which is not necessary to solve the task at hand. Since the tracking errors are computed only for successful runs, the SysID baseline achieves a slightly lower tracking error in one of the metrics. \(L^1 \) is the baseline with the strongest performance in our simulation experiments. However, it relies on the explicit knowledge of a reference model which we choose as the median value of all parameters in the testing range in Table II while our method with other baselines has no prior knowledge of the model. However, \(L^1 \) is not implemented in our real-world experiments as a baseline because it is highly sensitive to latency and requires significant engineering work. In contrast, our approach can handle latency very well by simulating it during training. We also evaluate the task of stabilization on held-out environmental disturbances, as exemplified by random external forces and partial failure of a motor. The results of these experiments are reported in Table IV. Our method outperforms all baselines in both out-of-distribution disturbances cases. Compared to the strongest baseline \(L^1 \), our method reduces the failure rate by up to 1.14 times, the average height error by up to 67.7%, and the average command tracking error by up to 22.4%.

C. Adaptation Analysis

We analyze the estimated intrinsics vector \(\hat{z} \) for adaptation on incremental payloads. We incrementally add payloads in total of 290g to the quadcopter in hovering. The quadcopter adapts successfully to payloads and stabilizes itself at the target position. We plot all components of the estimated intrinsics vector from the adaptation module during the experiment in Figure 4. We find that whenever a payload is applied, there is a change in all intrinsics components, indicating that the disturbance has been detected by the adaptation module. Then the quadcopter recovers from the disturbance and all components of the intrinsics vector converges to different values as they are before the payload is applied. From the change of the plotted components of intrinsics vector in response to the disturbance, we see that it takes around 2s for our controller to detect the disturbance, estimate the intrinsics vector, adapts from the disturbance, and finally stabilizes. The adaptation period of our controller is much faster than that of methods with online estimation of ground truth model parameters such as [2], where it takes 10s to 15s in-flight to obtain an accurate model estimate.

VI. Conclusion

In this work, we show how a single policy can control quadcopters of totally different morphology, mass, and actuation. We successfully transfer a method initially developed for legged locomotion in adapting terrains to quadcopters in adapting a diverse set of quadcopter bodies and disturbances. Without any additional tuning or modification, the single policy trained only in simulation can be deployed zero-shot to real quadcopters of very different design and hardware characteristics while showing rapid adaptation to unknown disturbances at the same time. Adaptive control has achieved great success in adaptation to model uncertainties and disturbances, but our work offers a fresh view on the meaning of adaptation by completely bypassing the notion of a reference model that most adaptive control methods use. This feature enables our method to adapt to a much wider range of robots and disturbances.

VII. Acknowledgement

This work was supported by the DARPA Machine Common Sense program, Hong Kong Center for Logistics Robotics, and
the Graduate Division Block Grant of the Dept. of Mechanical Engineering, UC Berkeley. The experimental testbed at the HiPeRLab is the result of contributions of many people, a full list of which can be found at [hiperlab.berkeley.edu/members/]. This work was also partially supported by the ONR MURI award N00014-21-1-2801.

REFERENCES

