
Towards Safe and Efficient Through-the-Canopy Autonomous Fruit
Counting with UAVs

Teaya Yang1, Roman Ibrahimov1 and Mark W. Mueller1

Abstract— We present an autonomous aerial system for safe
and efficient through-the-canopy fruit counting. Aerial robot
applications in large-scale orchards face significant challenges
due to the complexity of fine-tuning flight paths based on
orchard layouts, canopy density, and plant variability. Through-
the-canopy navigation is crucial for minimizing occlusion by
leaves and branches but is more challenging due to the complex
and dense environment compared to traditional over-the-canopy
flights. Our system addresses these challenges by integrating:
i) a high-fidelity simulation framework for optimizing flight
trajectories, ii) a low-cost autonomy stack for canopy-level
navigation and data collection, and iii) a robust workflow for
fruit detection and counting using RGB images. We validate
our approach through fruit counting with canopy-level aerial
images and by demonstrating the autonomous navigation ca-
pabilities of our experimental vehicle.

I. INTRODUCTION

Fruit counting in orchards helps farmers make manage-
ment decisions, such as harvest scheduling, labor allocation,
and storage strategies [1]. With recent advances in precision
agriculture and remote sensing, robotic systems have demon-
strated great success in automating the counting process,
significantly reducing labor cost and enabling frequent crop
inspections.

In particular, fruit counting using sequences of RGB
images collected by autonomous systems through computer
vision algorithms [2] has enabled robots equipped with low-
cost sensors to perform yield estimation and prediction tasks.
For instance, [3] presents a method to reliably detect green
fruits using RGB images, in contrast to previous techniques
that relied on expensive multispectral sensors [4]. Robust
fruit detection of holly fruits, which are small and occur
in clusters, is demonstrated in [5], further highlighting the
capability of modern algorithms to extract valuable informa-
tion using only colored images. The You Only Look Once
(YOLO) algorithm [6] has become a prominent method in
fruit detection tasks [5]-[7], and its successive versions con-
tinue to lead advancements in this field. Building upon these
successes, we incorporate YOLO as the primary detection
tool for our proposed autonomous counting method.

Detection alone, however, is not sufficient for providing
reliable fruit counting results using visual data. The major
challenge in fruit counting with image sequence is the
risk of double counting, especially when the same fruit
appears multiple times across different frames. In [8], a
robust fruit counting framework that integrates detection,

1The authors are with the High Performance Robotics Lab, Department
of Mechanical Engineering, University of California, Berkeley, CA 94709,
USA.

Fig. 1. Experimental vehicle flying autonomously at canopy level while
collecting visual data using a RGB camera. This figure is a compound image
showing multiple states of the vehicle during flight.

tracking, and structure from motion is outlined. Detected
fruits are used as features and tracked using the Hungarian
Algorithm [9], with the results serving as raw inputs for
the structure-from-motion step using COLMAP [10], [11].
We adopt this method in our work, tailoring it to data
collected from canopy-level flight, and incorporate up-to-date
tracking techniques. Specifically, we use ByteTrack [12] in
place of the Hungarian Algorithm to better maintain fruit
tracking, particularly in cases of low-confidence detections.
This approach is crucial when image quality is reduced due
to factors such as strong sunlight or motion blur, conditions
that are common in outdoor environments.

Despite the successes of computer vision techniques in
image processing, reliable data collection using autonomous
robotic systems remains a challenge. Previous efforts to
ensure the safety of robots include using UAVs to fly above
tree canopies [13], [14], enabling rapid data collection thanks
to their agility and maneuverability. An alternative solution
involves operating ground vehicles [15] between tree rows,
which has shown promise in counting large fruits in orchards
with wall-like canopies, where ground-level data is sufficient
to capture most fruits. Nevertheless, both methods miss
critical vantage points that are essential for detecting fruits in
trees with dense foliage. Flying at canopy level offers a better
solution, as illustrated in Figure 4, which compares simulated
fruit counting results in a walnut orchard. While some
works focusing on image processing collected data using
manually controlled canopy-level flights [16], [17] addressed
this challenge by using stereo images for obstacle avoidance
through onboard local planning. Our approach offers an
alternative solution, relying on fewer onboard sensors by

Fig. 2. Block diagram of the proposed autonomous system, consisting of three main components: a simulation framework that leverages specified orchard
parameters (such as average tree height, tree spacing, and plant type) for global trajectory planning; onboard autonomy components that ensure safe and
efficient data collection during flight; and a post-flight counting algorithm that processes the collected RGB images, producing the final fruit count.

performing state estimation and obstacle detection using the
same camera unit, thus ensuring a low-cost, power-efficient
data collection vehicle.

In the context of through-the-canopy flight, global tra-
jectory planning methods are extremely limited. While [17]
addresses the challenges of safety and navigation, their ap-
proach to global trajectory planning assumes fruit trees have
wall-like properties and applies coverage-path planning tech-
niques commonly used in structural inspection [18]. These
methods are inadequate for orchards with dense foliage,
where fruits within the camera’s field of view may be easily
occluded by leaves and branches. Effective path planning
must account for these occlusions to optimize fruit visibility.
Previous efforts that consider these occlusion relationships,
such as [19] and [20], focus on inspecting individual fruit
clusters from a close distance, making these methods un-
suitable for orchard-scale planning, where hundreds of fruits
may appear in a single image. Moreover, plant science
research like [21] has shown that fruit distribution varies
across different levels of the tree canopy, making it essential
to account for both local and global fruit distributions when
planning paths at the orchard level. Our proposed method
provides a more comprehensive solution to this path planning
problem by incorporating high-fidelity fruit distribution and
occlusion models, thereby optimizing flight trajectories for
efficient and large-scale data collection.

Our proposed system achieves autonomous fruit counting
in orchard environments through three main steps: global
trajectory planning based on high-fidelity modeling, data
collection using an autonomous vehicle, and fruit detection
and counting from onboard RGB images. As illustrated in
Figure 2, the system begins with a simulation framework,
described in Section II, which uses high-fidelity tree models
with realistic architectures to compute visible fruit counts
from predefined trajectories. The next step, outlined in Sec-
tion III, involves data collection with a low-cost experimental
vehicle equipped with minimal sensors. This vehicle ensures
safe, autonomous operation through vision-based state es-
timation and depth-image-based obstacle avoidance. Finally,
Section IV presents the fruit detection and counting workflow
incorporating state-of-the-art tools for detection, tracking,
and structure from motion to process collected RGB images.

Fig. 3. Illustration of the occlusion checking process. Frustum culling
is first performed, where only the geometric primitives contained in the
camera’s field of view are considered. A ray is cast from the camera to
each contained fruit’s center, and a fruit is marked as visible only if the ray
does not intersect any surrounding mesh triangles.

II. ORCHARD SIMULATION FOR TRAJECTORY
GENERATION

In this section, we introduce the proposed simulation
framework, which provides insights into optimal trajectory
parameters for data collection. A key element of this frame-
work is the realistic modeling of fruit trees and their archi-
tectural structures, as accurate representation of the spatial
relationships between fruits and tree components is essential
for determining fruit visibility. To achieve this, we use the
Helios 3D plant modeling framework [23] and its Weber-
Penn [24] tree generation plug-in, which ensures realistic
and adaptable tree architecture generation.

Helios includes models for commonly seen fruit trees,
such as orange, walnut, almond, and apple, with built-in
parameters such as recursive branching levels, leaf angles,
and fruit occurrence that mimic real-world characteristics.
Additionally, the canopy generator plug-in allows users to
input custom parameters such as tree spacing, trunk height,
and fruit radius, which can be adjusted to match the condi-
tions of specific orchards. Since real orchards exhibit varying
tree types and spacing, these customizations are crucial
to creating a simulation environment tailored to specific

Fig. 4. Simulation results comparing fruit counts using three distinct data collection strategies. (a)-(c) depict camera configurations for through-the-
canopy flight, over-canopy flight, and ground vehicle collection, respectively. (d) shows the lawn-mower pattern applied uniformly across all methods for
comparison. (e)-(g) present fruit counting results and the corresponding fruit distribution patterns. Data collection using the lawn-mower pattern in the
simulation captured 66%, 55%, and 34% of the total fruits for each method, respectively, highlighting the advantage of through-the-canopy UAV data
collection.

Algorithm 1 Visible Fruit Counting Algorithm
Require: C: Set of camera configurations
Require: T : Set of trees
Require: F : Set of fruits on tree Tj

Ensure: Detected fruits for each camera configuration Ci

1: for Ci ∈ C do
2: Compute camera frustum F(Ci)
3: for Tj ∈ T and Fk ∈ F do
4: if Fk is inside F(Ci) then
5: Cast ray rCi→Fk

6: for each triangle ∆ ∈ Tj (leaves, branches,
trunks) do

7: Check for ray-triangle intersection [22]
8: if no intersection then
9: V ← {Tj , Fk}

10: end for
11: end if
12: end for
13: end for
14: nvisible ← |set(V)|

properties of the target orchard, where autonomous fruit
counting will be performed.

In this simulation environment, the smallest subdivisions
of all generated trunks, branches, leaves, and fruits are
represented as triangles. Figure 3 illustrates selected details
focusing on the leaves, while Figure 5a provides examples
of full tree renderings. During this generation process, the
vertices of these shapes are stored, with each tree assigned
a unique ID and each fruit assigned a corresponding fruit
ID. With this information about the simulated orchard envi-
ronment, we can perform fruit visibility analysis for a given

camera orientation. We assume that branches, leaves, and
trunks may obscure the fruits. Given a path with discrete
camera orientations and parameters such as field of view
and depth of view, the goal is to determine the total number
of visible fruits along the path. This process is presented in
Algorithm 1 and a visualization of the occlusion checking
process is shown in Figure 3.

The flight trajectories are defined by a set of camera
configurations, C. For each camera configuration, Ci, we
can construct a frustum F(Ci) with an associated field
of view and depth that simulates the maximum distance
at which a fruit may still be captured by the camera’s
resolution. For each tree Tj from the set of generated trees
T , there is an associated set of fruits denoted as F . Frustum
culling is first performed, ensuring that only fruits within the
camera’s view are checked for occlusion. For each Fk that
is contained, a ray rCi→Fk

is cast from the camera location
toward the fruit’s center. We then iterate through the mesh
triangles of the surrounding geometric primitives, using the
Möller–Trumbore algorithm [22] to check for intersections.
If the ray intersects any triangle between the fruit and the
camera, the fruit is considered occluded. Figure 3 illustrates
this process with examples showing how occlusions are
determined by intersections with surrounding geometry. A
fruit that passes this occlusion check is marked as visible,
and its corresponding fruit ID, along with the associated
tree ID, is stored in a multiset V . While storing the fruit
and tree IDs is not strictly required for counting, doing so
provides additional insights into the spatial distribution of
visible fruits and their associations with specific trees. This
enriched data makes our method valuable not only for fruit
counting but also for other applications that benefit from
through-the-canopy data collection, such as identifying low-

Fig. 5. Simulation results comparing fruit counting performance at
different through-the-canopy flight heights and camera configurations. (a)
Simulated trajectories tested at heights ranging from 1 m to 8 m, using two
configurations: a single front-facing camera and two side-facing cameras.
(b) Results showing fruit visibility at different flight heights, with optimal
heights of 6.5 m for the front-facing camera and 5 m for the side-facing
cameras. The two side-facing cameras achieve a maximum visible fruit
coverage of 45.4%, compared to 32.3% for the front-facing camera.

productivity zones or detecting diseases in trees [1].
The proposed simulation framework provides insights into

the effectiveness of different methods for collecting fruit
counting data. Figure 4 illustrates a simulated orchard with
10 walnut trees, which is used to compare three distinct
data collection methods, all following a lawn-mower pattern.
The simulation includes three camera configurations: a side-
mounted camera on a vehicle flying through the canopy, a
downward-facing camera on a UAV flying above the canopy,
and an upward-facing camera angled at 30 degrees from
a 1-meter-tall ground vehicle. The results suggest that the
through-the-canopy flight achieves the highest fruit visibility,
capturing 66% of the total fruits visible, compared to 55%
for the over-canopy flight and 36% for the ground vehicle,
emphasizing the need for canopy-level autonomous data
collection for this application. By recovering the positions of
the fruits through their recorded fruit IDs, this analysis also
reveals the distribution of visible fruits for each method, as
shown in purple in Figure 4. In practice, such insights can
help users optimize flight paths and data collection strategies
before deploying vehicles, reducing experimental costs and
the need for multiple iterations.

Building on the through-the-canopy flight strategy, we
apply the same occlusion model to optimize trajectory pa-
rameters and camera orientations. In Figure 5, we present an
example where a 7.6 m by 7.3 m orchard block is repeatedly
generated. In each simulation, the vehicle follows a straight-
line trajectory down the center of the 7.6 m spacing, and
a range of flight heights from 1 m to 8 m is tested.
Two different camera configurations are also compared: one
front-facing camera and two side-facing cameras. The fruit
counting results for each trajectory and configuration are
computed and averaged across the 10 generated orchard
blocks. The results indicate that the optimal trajectory height
for the front-facing camera is 6.5 m, achieving a visual
coverage of 32.3% of all the fruits in the orchard block.
In contrast, carrying two side-facing cameras provides sig-
nificantly greater coverage, reaching 45.4% at the optimal
height of 5 m. It should be noted that the chosen straight-

line trajectories inevitably miss fruits on the opposite sides
of the trees, which are not covered by the UAV’s flight
path, resulting in lower overall percentage coverage com-
pared to the previous example. Additionally, the two side-
facing cameras consistently result in higher fruit visibility
across nearly all through-the-canopy flight heights, making
this configuration a more effective solution for maximizing
coverage. Our proposed framework enables users to fine-
tune flight paths and camera configurations in simulation,
reducing the cost of experimental fine-tuning.

Additionally, the tools introduced in this section can be
applied to generate ground truth annotations for synthetic
visual data, facilitating the development and testing of vision
algorithms, such as those outlined in Section IV. By lever-
aging the known fruit IDs, the 3D positions of the fruits can
be accurately projected into the image frame, enabling the
creation of annotated datasets. When paired with synthetic
images generated by UAV simulators with integrated auton-
omy stacks, this approach supports comprehensive evaluation
of the entire autonomous system, from trajectory planning to
data processing. For instance, these capabilities are supported
by our prior work on simulating autonomous flight systems
in agricultural environments [25].

III. DRONE AUTONOMY FOR DATA COLLECTION

In this section, we introduce the proposed autonomy
pipeline and the vehicle developed for through-the-canopy
data collection. The vehicle’s intelligence consists of three
key components: a low-level controller that converts thrust
and angular velocity commands into motor speeds; the
RAPPIDS planner [26], which uses depth images for obsta-
cle avoidance during flight; and a visual-inertial-odometry
(VIO)-based estimator using OpenVINS [27], which inte-
grates IMU and stereo camera inputs for accurate state
estimation. The system interfaces through the Robot Oper-
ating System (ROS), and a block diagram illustrating these
communications is shown in Figure 2.

The experimental vehicle comprises of the following com-
ponents: a RealSense D455 camera for depth and stereo
image collection, a Pixracer R15 flight controller, and a
Qualcomm RB5 computing board. Additionally, an IDS
camera for collecting RGB images is mounted on the side
of the vehicle. These hardware components, along with the
vehicle design, are depicted in Figure 6. Since both state
estimation and local planning rely solely on the outputs
from the depth camera unit, this design eliminates the need
for additional onboard sensors, ensuring cost and power
efficiency, and making the vehicle applicable to large-scale
monitoring missions. Furthermore, the reliance on vision-
based state estimation allows the vehicle to operate in diverse
environments, including indoor plant monitoring missions
where GPS signals are unavailable [28].

Visual-inertial state estimation is performed using the
OpenVINS framework, which we employ for its accuracy
and compatibility, enabling seamless integration with our
hardware components. It is based on the Multi-State Con-
straint Kalman Filter (MSCKF) [29], which efficiently fuses

visual and inertial data to estimate the vehicle’s state. The
MSCKF method takes inputs from IMU measurements and
visual features extracted from stereo images, with the IMU
providing measurements at 400 Hz and the stereo images
processed at 15 Hz. An example of the left stereo camera
image with feature tracking is shown in Figure 7a. As a
result, the vehicle’s 6-degrees-of-freedom pose, along with
its velocities and angular velocities, is estimated in real time.

In addition to accurate state estimation, obstacle avoid-
ance is crucial for ensuring the safety of the robot during
through-the-canopy flight. To achieve this, we implement the
RAPPIDS planner [26], which uses depth images collected
at 15 Hz from the RealSense camera to plan collision-free
trajecotries. This feature allows the vehicle to avoid unex-
pected obstacles, such as tree branches, while in flight. The
RAPPIDS planner receives a goal point and conducts local
trajectory planning by collision-checking samples of feasible
trajectories. Using the simulation framework outlined in
Section II, the planned global trajectory is first provided to
the planner, and the local planner continuously modifies this
path based on depth data during flight. The planner samples
minimum jerk trajectories, s(t), with duration T using the
method outlined in [30], where each trajectory is represented
by a fifth-order polynomial:

s(t) = α
t5

120
+ β

t4

24
+ γ

t3

6
+ s̈(0)

t2

2
+ ṡ(0)t+ s(0)

where s(0), ṡ(0), and s̈(0) are the initial position, velocity,
and acceleration of the vehicle. The coefficients α , β,
γ ∈ R3 depend on s(T), ṡ(T), s̈(T), and T , ensuring smooth
motion. The planner then checks each sampled trajectory for
input feasibility, speed limits, and collisions. The detailed
process for feasibility and velocity checking is discussed in
[30]. For collision checking, the planner partitions the free
space into rectangular pyramids based on the depth image,
and a trajectory remains collision-free if it stays within the
union of these pyramids. This method efficiently reduces
the computational cost while maintaining reliable obstacle
avoidance. More details about this pyramid generation and
collision checking process can be found in [26]. The planning
process is repeated with each new depth image received to
account for the latest obstacle information, and the vehicle
follows the previously planned trajectory if no new feasible,
collision-free path is found.

Finally, we demonstrate the feasibility of our proposed
autonomy stack and vehicle design through an experimental
flight in an orchard. The flight is shown in the supplementary
video, and Figure 1 displays an action sequence with selected
states of the vehicle. In addition, Figure 7 includes samples
of the onboard images and the visualization of local planning
results. Specifically, Figure 7a shows a sample of the onboard
depth image, a monochrome image from the stereo camera
for visual-inertial odometry, and a collected RGB image
with fruits detected in post processing. Figure 7b presents
the reference trajectory in green, the planned trajectory at
selected time steps in blue, and the resulting flight path,
based on the position output from the estimator, in black.

Fig. 6. Experimental vehicle with the proposed autonomy stack. A
RealSense D455 depth camera captures both depth and stereo images, while
an IDS camera is responsible for RGB image collection for fruit counting.
The autonomy algorithms are executed on a Qualcomm RB5 board, which
sends desired thrust and angular velocity commands to a Pixracer R15 flight
controller.

Fig. 7. Example data collection flight results. (a) Samples of the onboard
depth image, left stereo image, and RGB image. (b) Visualization of the ex-
perimental flight. The supplementary video showcases the same experiment,
where the vehicle follows the global reference trajectory (green), and locally
planned trajectories (blue) are shown at selected time steps. The visual-
inertial-based estimation output is displayed in black, with reconstructed
fruit landmarks highlighted in red.

Additionally, using the collected onboard data, we can re-
construct the locations of detected fruits, as outlined in
Section IV. This example highlights the potential for our
proposed data collection method for fruit counting missions.

IV. AUTONOMOUS FRUIT COUNTING

While our proposed methods outlined in previous sec-
tions ensure effective data collection flights, accurate fruit
identification and counting from the onboard images remain
key to completing the autonomous fruit counting mission.
To this end, we adopt the approach proposed in [8], which
effectively mitigates double counting, where the same fruit
may appear in multiple frames. This method uses fruits as
features to reconstruct 3D landmarks, providing an accurate
fruit count while maintaining computational efficiency in the
reconstruction process. We further enhance this approach
by integrating the latest computer vision advancements for
detection and tracking. Specifically, we use YOLOv8 [6] for
fruit detection and ByteTrack [12] for tracking across image

sequences. The proposed workflow involves: i) detecting
fruit in each frame using fine-tuned YOLOv8, ii) tracking
detected fruits across the image sequence with ByteTrack,
iii) recovering 3D fruit locations via COLMAP [10], [11],
and iv) clustering the reconstructed fruit landmarks to obtain
the final count.

For detection, we first fine-tune the YOLOv8 model using
a dataset of 100 images of the target fruit type, collected
under good lighting condition and manually labeled with
bounding boxes. This process ensures that the model adapts
to the unique visual characteristics of the fruit, providing
robust performance even in suboptimal conditions, such
as varying lighting and partial occlusion from leaves or
branches. YOLOv8 is well-suited for orchard fruit detection
due to its ability to efficiently detect multiple overlapping
fruits in cluttered, natural environments while maintaining
high accuracy even for smaller, partially obscured objects.

While [8] uses the Hungarian Algorithm for fruit track-
ing, we adopt ByteTrack for its superior handling of low-
confidence detections, which are common under poor imag-
ing conditions. ByteTrack effectively maintains feature corre-
spondences between frames, providing robust raw inputs for
the structure-from-motion step. Figure 8a shows a sample of
the tracking output, with each tracked fruit assigned a unique
ID to distinguish it through the sequence.

COLMAP remains the state-of-the-art structure-from-
motion toolbox, and we use it to reconstruct the 3D land-
marks for the fruits. Using the feature correspondences
from the tracking step, COLMAP recovers camera intrinsics,
extrinsics, and 3D landmarks, with fruits serving as features.
Since the RGB camera is integrated into the autonomy
stack, the reconstruction process may be initialized using the
camera extrinsics, improving the reliability and accuracy of
fruit landmark positioning. Finally, we apply density-based
spatial clustering [31] to group the reconstructed landmarks
by individual fruits, yielding the final fruit count.

Figure 8 illustrates an example of autonomous fruit count-
ing using the proposed workflow. A video captured during a
low-altitude flight near a small orange tree with 12 fruits
is processed, and the method accurately recovers all 12
fruits along with their estimated positions. The fruits are
first detected and tracked in the image frames, as shown in
Figure 8a. During the structure from motion step, the camera
extrinsics and 33 landmarks are reconstructed, as depicted in
Figure 8b. Finally, after applying the clustering algorithm, the
landmarks are grouped into 12 distinct clusters, as shown in
different colors, revealing the total fruit count. This example
with orange counting demonstrates the effectiveness of the
proposed approach. However, in larger orchards with smaller
fruits, increased occlusions may impact detection accuracy,
like discussed in Section II. With further refinement, the
pipeline is expected to handle these more challenging sce-
narios effectively.

V. CONCLUSION AND FUTURE WORK

In this work, we have developed an autonomous aerial
system designed for efficient and safe through-the-canopy

Fig. 8. Example results for the proposed autonomous counting workflow.
(a) Tracking output where an ID is assigned to each detected and tracked
fruit. (b) Counting results after the structure-from-motion step for a tree with
12 fruits. The 33 reconstructed 3D landmarks are grouped into 12 distinct
clusters, denoted by different colors. The reconstructed camera extrinsics
are marked in black at select time steps.

fruit counting in large-scale orchards. Our approach lever-
ages a high-fidelity simulation framework to optimize flight
trajectories, a cost-effective autonomy stack for canopy-level
navigation and data collection, and state-of-the-art computer
vision tools for fruit counting. The system’s performance
was validated through successful fruit counting using aerial
images captured at canopy level, along with demonstrations
of the autonomous navigation capabilities of the experimental
vehicle. These results demonstrate the system’s potential to
enhance data collection efficiency and fruit yield estimation
in complex orchard environments, offering a promising so-
lution for large-scale agricultural applications.

For future work, several improvements can be made to
further enhance the system’s capabilities. First, global plan-
ning could be improved by considering the flight speed
of the vehicle, as it significantly impacts both power con-
sumption and orchard coverage. Second, incorporating real-
time feedback on the quality of the collected images could
further ensure the reliability of data collection. While the
integration of the RGB camera into the autonomy stack
provides the potential for this enhancement, it has not yet
been implemented in the current system. Finally, closer
integration of the autonomy stack and fruit counting pipeline
would enable real-time, onboard fruit counting, which is
achievable given the computational efficiency of our method.
Addressing these factors would help further optimize the
system for large-scale, continuous agricultural monitoring.

ACKNOWLEDGMENT

This work was supported by the Agriculture and Food
Research Initiative (AFRI) Competitive Grant no. 2020-
67021-32855/project accession no. 1024262 from the USDA
National Institute of Food and Agriculture, the Graduate
Student Summer Fellowship, and the William C. Webster
Graduate Fellowship from the Department of Mechanical
Engineering at UC Berkeley. The authors would like to thank
Dylan Lee and Ting-Hao Wang for their contributions to the
development of the autonomous vehicle, and Brian Bailey
along with the members of the UC Davis Plant Simulation
Laboratory for their valuable advice on plant modeling and
fruit detection.

REFERENCES

[1] C. Zhang, J. Valente, L. Kooistra, L. Guo, and W. Wang, “Orchard
management with small unmanned aerial vehicles: A survey of sensing
and analysis approaches,” Precision Agriculture, vol. 22, no. 6, pp.
2007–2052, 2021.

[2] G. Farjon, L. Huijun, and Y. Edan, “Deep-learning-based counting
methods, datasets, and applications in agriculture: a review,” Precision
Agriculture, pp. 1–29, 2023.

[3] W. Maldonado Jr and J. C. Barbosa, “Automatic green fruit counting
in orange trees using digital images,” Computers and Electronics in
Agriculture, vol. 127, pp. 572–581, 2016.

[4] N. Aleixos, J. Blasco, F. Navarron, and E. Moltó, “Multispectral
inspection of citrus in real-time using machine vision and digital signal
processors,” Computers and electronics in agriculture, vol. 33, no. 2,
pp. 121–137, 2002.

[5] Y. Zhang, W. Zhang, J. Yu, L. He, J. Chen, and Y. He, “Complete and
accurate holly fruits counting using yolox object detection,” Computers
and Electronics in Agriculture, vol. 198, p. 107062, 2022.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[7] A. I. B. Parico and T. Ahamed, “Real time pear fruit detection and
counting using yolov4 models and deep sort,” Sensors, vol. 21, no. 14,
p. 4803, 2021.

[8] X. Liu, S. W. Chen, C. Liu, S. S. Shivakumar, J. Das, C. J. Taylor,
J. Underwood, and V. Kumar, “Monocular camera based fruit counting
and mapping with semantic data association,” IEEE Robotics and
Automation Letters, vol. 4, no. 3, pp. 2296–2303, 2019.

[9] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[10] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[11] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixel-
wise view selection for unstructured multi-view stereo,” in European
Conference on Computer Vision (ECCV), 2016.

[12] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu,
and X. Wang, “Bytetrack: Multi-object tracking by associating every
detection box,” in European conference on computer vision. Springer,
2022, pp. 1–21.

[13] A. Mokrane, A. C. Braham, and B. Cherki, “Uav coverage path
planning for supporting autonomous fruit counting systems,” in 2019
International Conference on Applied Automation and Industrial Diag-
nostics (ICAAID), vol. 1. IEEE, 2019, pp. 1–5.

[14] O. E. Apolo-Apolo, J. Martı́nez-Guanter, G. Egea, P. Raja, and
M. Pérez-Ruiz, “Deep learning techniques for estimation of the yield
and size of citrus fruits using a uav,” European Journal of Agronomy,
vol. 115, p. 126030, 2020.

[15] A. Mokrane, A. Choukchou-Braham, and B. Cherki, “Coverage
path planning of autonomous marsupial systems for supporting fruit
counting process,” in 2020 International Conference on Electrical
Engineering (ICEE). IEEE, 2020, pp. 1–6.

[16] Z. Zheng, J. Xiong, X. Wang, Z. Li, Q. Huang, H. Chen, and Y. Han,
“An efficient online citrus counting system for large-scale unstructured
orchards based on the unmanned aerial vehicle,” Journal of Field
Robotics, vol. 40, no. 3, pp. 552–573, 2023.

[17] N. Stefas, H. Bayram, and V. Isler, “Vision-based monitoring of
orchards with uavs,” Computers and Electronics in Agriculture, vol.
163, p. 104814, 2019.

[18] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp.
1258–1276, 2013.

[19] P. Roy and V. Isler, “Active view planning for counting apples in
orchards,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 6027–6032.

[20] S. Marangoz, T. Zaenker, R. Menon, and M. Bennewitz, “Fruit
mapping with shape completion for autonomous crop monitoring,”
in 2022 IEEE 18th International Conference on Automation Science
and Engineering (CASE). IEEE, 2022, pp. 471–476.

[21] Y.-T. Wang, B. N. Bailey, K. Fu, and K. Shackel, “Topological and
spatial analysis of within-tree fruiting characteristics for walnut trees,”
Scientia Horticulturae, vol. 318, p. 112127, 2023.

[22] T. Möller and B. Trumbore, “Fast, minimum storage ray/triangle
intersection,” in ACM SIGGRAPH 2005 Courses, 2005, pp. 7–es.

[23] B. N. Bailey, “Helios: A scalable 3d plant and environmental bio-
physical modeling framework,” Frontiers in Plant Science, vol. 10, p.
1185, 2019.

[24] J. Weber and J. Penn, “Creation and rendering of realistic trees,” in
Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, 1995, pp. 119–128.

[25] J. Zha, T. Yang, and M. W. Mueller, “Agri-fly: Simulator for uncrewed
aerial vehicle flight in agricultural environments,” 2024, submitted for
publication.

[26] N. Bucki, J. Lee, and M. W. Mueller, “Rectangular pyramid parti-
tioning using integrated depth sensors (rappids): A fast planner for
multicopter navigation,” IEEE Robotics and Automation Letters, vol. 5,
no. 3, pp. 4626–4633, 2020.

[27] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins:
A research platform for visual-inertial estimation,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 4666–4672.

[28] M. F. Aslan, A. Durdu, K. Sabanci, E. Ropelewska, and S. S. Gültekin,
“A comprehensive survey of the recent studies with uav for precision
agriculture in open fields and greenhouses,” Applied Sciences, vol. 12,
no. 3, p. 1047, 2022.

[29] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
international conference on robotics and automation. IEEE, 2007,
pp. 3565–3572.

[30] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally
efficient motion primitive for quadrocopter trajectory generation,”
IEEE transactions on robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[31] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in kdd, vol. 96, no. 34, 1996, pp. 226–231.

