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ABSTRACT We present Agri-fly, a simulator for Uncrewed Aerial Vehicles (UAVs) with a focus on
agricultural applications. In addition to general flight simulator features, such as dynamics modeling
and sensor synthesis, Agri-fly comes with an autonomous stack for under-the-canopy flight and tools
to create high-fidelity agricultural landscapes. By leveraging detailed plant models and tools for scene
customization, Agri-fly excels at generating realistic agricultural environments for UAV operations. This
capability facilitates in-depth analysis of the visual and spatial relationships between UAVs and plants,
creating avenues for refining operational strategies in agricultural environments. The source code of Agri-fly
and detailed usage instructions are available at: github.com/muellerlab/agri-fly.

INDEX TERMS Uncrewed Aerial Vehicles (UAVs), Robotics, Simulation, Agricultural Application

I. INTRODUCTION
In recent years, the application of UAVs has substantially
boosted agricultural production. UAVs have improved pro-
cesses such as plant health monitoring, disease detection, and
pesticide spraying. These advancements have led to respon-
sive management of plant health and optimized application
of chemicals. A survey on recent developments in UAV tech-
nologies in the field of agriculture can be found in [1].

While most current UAV applications are limited to above-
the-canopy (or above-the-treetops) operations, there is a ris-
ing demand for intricate under-the-canopy tasks, such as
close-up plant monitoring, autonomous pollination, and yield
estimation. However, developing these capabilities poses nu-
merous challenges. For instance, wind-moved thin branches
complicate obstacle detection and avoidance, whereas con-
stant growth of plants makes previous spatial maps obsolete
rapidly, necessitating continuous mapping updates. As a re-
sult, reliable under-the-canopy flight is hard to achieve, and
frequent crashes during testing can cause significant delays in
the development process. Given these challenges, the need for
a risk-free simulation tool that provides realistic agricultural
environments for autonomous flight validation becomes clear.

In this paper, we introduce ‘‘Agri-fly’’, an open-source
UAV simulator designed for autonomous operation in agricul-
tural scenes. Agri-fly combines generalized UAV simulation
features, such as flight dynamics modeling and autonomous
flight controllers, with software tools to create, manage, and

visualize high-fidelity agricultural scenes. This enables users
to test and refine autonomous flight strategies in virtual envi-
ronments mirroring real-world agricultural landscapes. Addi-
tionally, Agri-fly can help validate flight missions, like visual
plant health scanning, that depend on accurately understand-
ing the spatial and visual relationships between UAVs and
plants. To achieve this, we have developed a customized flight
library responsible for dynamics simulation and autonomous
flight control, as well as a toolset in Unity [2] to populate and
manage agricultural worlds with high-fidelity plant models
created by the Helios 3D plant modeling framework [3]. In
addition, we connect the flight library and the agricultural
world in Unity with an information bridge based on AirSim’s
AirLib [4]. An example scene simulated in Agri-fly is shown
in Fig. 1.
In the following subsections, we will briefly overview

existing UAV simulators and agricultural robotics simulators
in the literature, and discuss what Agri-fly can achieve by
bridging the gap between the two groups.

A. UAV SIMULATORS IN THE LITERATURE
The literature features a variety of UAV simulators, each de-
signed for specific use cases and emphases. Here, we provide
a summary of popular UAV simulators and their key charac-
teristics. We begin with AirSim, which partially serves as the
foundation for this work, and then explore other influential
simulators.
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FIGURE 1. An example agricultural scene in Agri-fly: an aerial vehicle flies
autonomously in a simulated orchard built with high-fidelity almond
models. Top: simulated scene generated with high-fidelity plant models.
Bottom: an experimental flight scene in an almond orchard.

AirSim is an open-source simulator for autonomous vehicle
operation studies [4]. It has various versions and releases.
The primary version leverages the Unreal Engine [5] for
rendering, and it has a dedicated vehicle physics engine paired
with an environment manager. Designed with vision-based
machine learning research in mind, it emphasizes delivering
high-quality visuals to reduce the sim-to-real gap. Based on
the AirSim platform, many UAV simulators with specific ex-
pertise are developed, such as [6] for visual and language nav-
igation, [7] for software/hardware-in-the-loop system valida-
tion, and [8] for UAV-based landslide monitoring. Two years
post its original debut, an experimental version employing
Unity was created. It marked a great attempt to make AirSim
more accessible, given Unity’s lower hardware requirement
and greater adaptability. The Agri-fly incorporates the Unity
wrapper and bridge code from AirSim’s Unity version to link
different parts of the simulator.
Flightmare [9] is a flight simulator that features a rendering

engine and a synthetic sensor suite built within the Unity
framework. Its primary advantage is adaptability, allowing
users to select different configurations based on their hard-
ware setup to achieve the desired trade-off between simula-
tion speed and precision.
FlightGoggles [10], similar to Flightmare, employs a

FIGURE 2. A close-up shot of the under-the-canopy autonomous flight
experiment in an almond orchard, validating the autonomous stack used
in the Agri-fly simulator.

Unity-based rendering and a sensor synthesis suite. It comes
with a custom physics engine and offers VR-based first-
person flight visualization. In addition, it can interact with
real vehicles in a motion capture lab. It is designed to support
research on vision-based control and odometry algorithms.
RotorS [11] is a Gazebo-based [12] flight simulator with

accurate physics simulation for quadcopters and helicopters.
Its rendering engine is rooted in OpenGL, yielding less vivid,
but more computationally efficient visuals than FlightGog-
gles and Flightmare.

B. SIMULATORS FOR ROBOTS IN AGRICULTURAL
ENVIRONMENTS
Navigating agricultural environments is complex for robots,
and various simulators are created to assist in such endeav-
ors. A comprehensive review of existing agricultural robotics
simulators is detailed in [13]. Here, we provide a simplified
overview of the work with goals similar to those of Agri-fly.
A robotic vegetable harvesting simulator is presented in

[14]. This work introduces a fully simulated environment in
V-REP [15] for experimenting with sensors and manipulators
for sweet pepper harvesting. Meanwhile, a Gazebo-based
simulator for fruit mapping, which helps validate amethod for
creating accurate fruit maps using Simultaneous Localization
And Mapping (SLAM) is proposed in [16]. Moreover, a sim-
ulation for a robot fleet in precision agricultural environments
is proposed in [17]. The tool provides a dual-interface system
for configuring the crop field, robot fleet, and associated
sensors and actuators, and thus facilitates the assessment of
precision farming fleet strategies in a 3D simulated world.

C. AGRI-FLY: UAV SIMULATOR FOR AGRICULTURAL TASKS
From the review above, we can observe that existing UAV
simulators prioritize flight functionalities and visualization
rendering but place less emphasis on the surrounding envi-
ronments in which they operate. In contrast, for agricultural
robots, interaction (through image capture or physical con-
tact) is paramount, and determining the spatial relationship
between the robots and plants is critical. As a result, a virtual
environment that closely resembles real-world agricultural
scenarios is essential. To bridge the gap between general UAV
simulators and agricultural simulators, we created Agri-fly, a
flight simulator tailored for UAV operations in agricultural
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environments. Like Flightmare and FlightGoggles, Agri-fly
uses Unity for rendering and synthetic visual sensing. In ad-
dition, we developed a custom C++ flight library for fast and
high-fidelity quadcopter physics simulation, state estimation,
and autonomous flight control.

Agri-fly’s advantages are threefold:

1) Autonomous under-the-canopy flight pipeline
Agri-fly features an autonomous flight stack based on the
work in [18] for under-the-canopy flights, which we have
experimentally validated in an orchard (see Fig. 2 and the
attached video). The stack includes a motion planner that
senses the surrounding environment with a depth camera and
generates dynamically feasible trajectories that avoid colli-
sions with obstacles. This frees users, particularly those who
focus on agricultural productivity rather than specific flying
robotic technicalities, by eliminating the need to develop
autonomous flight control systems before validating robotic
missions in agricultural environments.

2) Agricultural model-realism
Existing UAV simulators prioritize vision-based machine
learning applications, focusing heavily on improving visual
rendering quality, while placing less emphasis on the specific
models within the scene. Meanwhile, recent robotics technol-
ogy advancements have demonstrated the potential of using
depth cameras for robust outcomes in robotics planning and
control [19], [20]. Depth cameras are less susceptible to color
and light interference. However, their effectiveness heavily
relies on the shape and spatial relationships of the objects
they detect. Consequently, usingmodels that closely resemble
real-world items is advantageous for bridging the sim-to-real
gap. Agri-fly features an extensive collection of high-fidelity
plant models developed with the Helios modeling framework
[3], which applies the Weber and Penn algorithm [21] to
generate trees with branch structures that closely mimic those
found in nature. This enables Agri-fly to accurately repli-
cate real-life shapes and spatial relationships in agricultural
scenes, helping narrow the sim-to-real gap.

3) Various environments with tools for customization
Agri-fly comes with four pre-built examples of realistic agri-
cultural environments: a fruit orchard, a vineyard, a green-
house, and a vertical farming pod, covering a range of repre-
sentative agricultural scenes. In addition, Agri-fly provides
a comprehensive toolkit for the autonomous generation of
detailed virtual environments, facilitating user-driven cus-
tomization through the Unity editor to enhance the adaptabil-
ity and versatility of the simulator. Additionally, the simulator
records the positions and orientations of all agricultural com-
ponents, including leaves, fruits, branches, and trunks. This
feature provides users with accurate data to examine intricate
spatial relationships, and helps create ground truth annota-
tions for synthetic visual data generated in the simulator.

With these advantages, Agri-fly serves as a virtual UAV
training ground for precision farming, enabling effective vali-

FIGURE 3. Structural diagram of the Agri-fly simulator. The simulator has
three key components: the flight library in charge of dynamics simulation
and autonomous flight, the Unity-based agricultural scene manager and
visualizer, and the information bridge connecting the two components.

dation and rapid iteration. By generating high-quality agricul-
tural scenes with realistic plant models, Agri-fly ensures that
simulated flights build confidence for successful real-world
operations. Additionally, Agri-fly supports mission planning
for tasks that require precise spatial coordination between
the UAV and crops. For example, with Agri-fly, users can
accurately predict whether an agricultural target, such as a
fruit, is visible to theUAVor obscured by foliage. Such spatial
reasoning and practice would be challenging without scenes
and plant models that accurately mirror real-life conditions.

II. SIMULATOR STRUCTURE
Agri-fly is composed of three major components: a custom
flight library, a Unity-based agricultural scene manager with
visualizer, and an information bridge connecting them. Fig.
3 illustrates the structure of Agri-fly and the interactions
between these key components.
The custom flight library we created, positioned on the left

in the Fig. 3, includes a UAV flight dynamics simulator and
a UAV autonomy stack for state estimation, path planning,
and control. Modular in design and connected through ROS
[22], this library offers flexibility for users to easily modify
or interchange individual modules as necessary.
On the right side of the diagram, the agricultural scene

manager and visualizer are responsible for creating and vi-
sualizing agricultural environments. This component is also
responsible for generating synthetic visual sensor data, in-
cluding RGB and depth images.
Centrally located in the diagram is the information bridge,

which utilizes AirSim’s AirLib and its Unity simulator wrap-
per. This tool integrates our flight library with Unity, ensuring
synchronization between the UAV’s state in the flight dynam-
ics simulator and the Unity scene. It also helps pipe the visual
sensor data to the autonomous motion planner.
For the remainder of this section, we will provide a detailed

introduction to each component and highlight the features of
Agri-fly related to these components.

A. FLIGHT LIBRARY
The flight library implements two key functionalities, dy-
namics simulation and computation for autonomous flight.
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FIGURE 4. Detailed structure of the flight library, which includes a flight
dynamics simulator and an autonomous flight stack with a state
estimator, a motion planner, and a flight controller.

A structural block diagram of the flight library is shown in
Fig. 4. Notably, each block in this diagram represents a single
code module. The modular design of the flight library allows
for easy editing or replacement of each block. Below is a
brief description of the default modules of the flight library
included in the released Agri-fly repository.

1) State estimator
The state estimator employs a Kalman Filter that utilizes
synthetic GPS measurements. It follows a predictor-corrector
structure, which predicts the vehicle states by integrating the
vehicle’s Inertial Measurment Unit (IMU) reading at a high
frequency and then corrects the state using a virtual GPS
measurement generated based on the simulated UAV state.

2) Collision avoidance planner
The flight library incorporates a depth-image-based collision
avoidance motion planner, which is originally proposed in
[20]. This planner detects obstacles from depth image, refor-
mulates depth information into pyramids for quick collision
checks, and subsequently generates a collision-free trajectory
using a sampling-based method. An experimental validation
of this planner in a forest environment can be found in [18].

3) Flight controller
The flight library employs a cascaded feedback controller to
help the simulated UAV track the planned trajectory. A block
diagram showcasing the structure is in Fig. 5. A position
controller outputs desired total thrust and thrust direction,
whereas an inner attitude controller computes desired torques.
Finally, a thrust converter maps the total thrust and body
torque commands to per-propeller thrust commands (i.e. mo-
tor speed commands).

FIGURE 5. The block diagram of the cascaded UAV controller
implemented in the flight library.

B. AIRLIB-BASED INFORMATION BRIDGE
The objective of the information bridge is to link the agri-
cultural scene in Unity with the flight library. We decide to
develop the information bridge based on AirSim’s AirLib
and its Unity wrapper rather than building it from scratch,
as they contain features closely matching our requirements.
This information bridge acts as a communication channel,
synchronizing the Unity scene with state updates from the
dynamics simulator and passing synthesized visual sensor
readings to the flight autonomy stack within the flight library.

C. AGRICULTURAL SCENE MANAGER AND VISUALIZER
To create and visualize the scenes in which UAVs operate,
we develop the scene manager and visualizer using the Unity
platform. The system comprises three main components: a
library of high-fidelity plant models, a management tool for
placing and tracking these models, and rendering pipelines
for visualizing the scenes and generating synthetic sensor
outputs. These components are introduced in detail below:

1) High-fidelity plant model and scenes
To reproduce an agricultural scene resembling reality, we em-
ploy 3Dmodels generated using theHelios 3D plantmodeling
framework [3]. The framework creates plant models using the
Weber and Penn branching algorithm, resulting in canopies
closely resembling what we observe in real trees. An example
almond tree model produced with Helios, juxtaposing against
a real almond tree can be viewed in Fig. 6. Beyond leaves
and branches, we can also incorporate fruits into the mod-
els. This can be very helpful for tasks focusing on produce
monitoring. In the Agri-fly repository, we have included pre-
generated high-fidelity models of different types of plants,
ranging from walnut trees to strawberry plants (see Fig. 7).
These models can be easily imported into a Unity scene to
create user-customized agricultural environment. In addition,
Agri-fly comes with four pre-built scenes: an almond orchard,
a vineyard, a mini greenhouse, and a vertical farm pod [23].
Users can directly use these scenes to test their missions and
can easily modify them by rearranging the position of the
models in the Unity editor. Figures of these pre-built scenes
can be found in Fig. 8.

2) Agricultural scene management
Agri-fly includes a scene manager script that tracks the
ground truth poses (positions and orientations) of all plants
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FIGURE 6. We use Helios to generate high-fidelity models that resemble
plants in real life. Here we use the almond tree as an example. Left:
photo of a real almond tree. Right: the almond tree model generated
using Helios.

FIGURE 7. Agri-fly comes with a wide range of high-fidelity plant models
that can be directly imported into agricultural scenes. Here we show a
few as an example: (A) orange; (B) olive; (C) strawberry; (D) almond; (E)
lemon; (F) walnut.

FIGURE 8. Agri-fly comes with four pre-built scenes: an orchard, a
vineyard, a mini greenhouse, and a vertical farm pod, representing
commonly-observed agricultural environments.

FIGURE 9. The granularity of the agricultural scene manager allows users
to analyze the spatial relationships between the drone camera and
individual elements, such as leaves and fruits. In this way, users can
predict if a fruit will be occluded by leaves during an image scan.

FIGURE 10. The scene generator allows users to specify the plant type,
number of plants, lay out and size variance, and autonomously generate
the agricultural scene for the user.

in the scene. More importantly, for the high-fidelity plant
models utilized in Agri-fly, each model can be dissected into
individual elementary components such as branches, leaves,
and fruits. This level of granularity is useful for in-depth
analysis of spatial relationships. For instance, for projects like
plant scanning, this feature enables users to predict whether a
fruit might be obscured by foliage, thereby informing drone
positioning for data collection (see Fig. 9 for example).
In addition, we have created a scene generator to au-

tonomously populate agricultural scenes. By specifying key
parameters such as plant type, orchard dimensions, and the
variance in plant sizes, users can quickly create an agricultural
environment for UAV operation tests. An illustration of the
autonomous agricultural scene generation process is shown
in Fig. 10. It can also be used to generate less structured
agricultural environments that UAVs have not encountered
before, to test the robustness of flight algorithms.

3) Visualization and image capturing tool
The visualization and image capturing tool simulates a third-
person camera tracking the UAVs, as well as the UAVs’
onboard visual sensors, such as RGB and depth cameras.
This allows the autonomous controller in Agri-fly to sense
its surroundings and avoid obstacles during flight, and en-
ables users to generate synthetic visual data for analysis or
training. We tune the image synthesis pipeline so that it is
representative of our real-life experimental vehicle in Fig.
2. The synthetic camera has the same field of view, res-
olution, focal length, and relative position with respect to
the vehicle center. Meanwhile, users can freely position the
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FIGURE 11. Left: generated RGB and depth image through the agri-fly
visualizer. Right: RBG and depth image taken by actual sensors for a
similar scene in real world.

FIGURE 12. Users can easily change the setup of the camera and take
pictures of the agricultural scene.

drone’s camera within the scene and adjust camera settings.
This flexibility enables users to collect images in the virtual
agricultural environment they have created, facilitating the
creation of customized image datasets tailored to specific
agricultural scenarios (see Fig. 12). The scene and the camera
footage are both rendered with the Universal Render Pipeline
(URP) of the Unity Engine [24], which is used for its user-
friendliness and low computational requirements. For image
pipelines mimicking onboard RGB and depth cameras, we
utilize the Unity ML-ImageSynthesis toolbox [25]. We adjust
the rendering pipeline and add a blurring effect to make the
synthesized output closely resemble real sensor captures. Fig.
11 presents a comparison between the RGB and depth images
synthesized by Agri-fly and those captured by an Intel Real
Sense D455 camera [26].

III. DEMONSTRATION EXAMPLE
In this section, we validate Agri-fly with an application ex-
ample, demonstrating autonomous data collection missions
within the simulator. This example highlights the ease of use
and operational efficiency of Agri-fly.

First, we set up a walnut orchard environment using our

FIGURE 13. A sample processed frame from a synthetic onboard image
captured during a simulated flight. The white boxes indicate the ground
truth for the fruits visible to the camera in this frame. As Agri-fly has
ground truth information of the pose of the fruits, we can accurately
annotate them without manual labeling.

scene manager. We select Helios walnut tree models and
configure the orchard’s size, tree size variance, and orien-
tation. We then setup the UAV with a front RGB and depth
camera for detect-and-avoidance purposes, along with two
side cameras for data collection. The default autonomous
under-the-canopy flight pipeline of Agri-fly is utilized for
this demonstration. We configure a series of waypoints in the
orchard via a JSONfile, instructing the vehicle to follow these
waypoints while autonomously avoiding obstacles such as
tree trunks and branches. The vehicle successfully navigates
through the orchard autonomously, collecting visual plant
data along the way.
Fig. 13 shows an example of the image collected during

the scanning flight. Thanks to Agri-fly’s scene manager, we
have the ground truth pose of all agricultural elements like
leaves and fruits in the scene. As a result, we can annotate the
position of these parts in the picture without manual labeling.
Fig. 14 shows a composite image of the whole simulated

flight process, including a top-down shot of the orchard and
the vehicle’s trajectory marked with a red curve. Data col-
lected in this flight can be post-processed to evaluate the
vehicle’s recording efficiency and used for other analysis
such as yield estimation. In addition to the flight in the
almond orchard, we have also simulated the autonomous
flights in other pre-built scenes. Videos and footage from all
simulated flights are attached to this paper and available at:
https://youtu.be/hMaTrmD2yTc.

IV. CONCLUSION
In this paper, we introduce Agri-fly, a UAV simulator tai-
lored specifically for agricultural scenarios. While it encom-
passes standard features of general UAV simulators—such
as dynamics simulation, autonomous flight, and sensor data
synthesis—Agri-fly places special emphasis on providing an
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FIGURE 14. An example demonstrating Agri-fly’s capabilities: the vehicle is commanded to autonomously fly between two lines of walnut trees while
avoiding tree branches and collecting image data. The red line indicates the vehicle’s flight path (from right to left). We show image captures from the
onboard depth and RGB cameras at the beginning, middle, and end of the flight.

accurate and realistic portrayal of agricultural environments.
Leveraging high-fidelity plant models generated through He-
lios, along with scripts for autonomous scene creation and
management, Agri-fly can swiftly create agricultural land-
scapes for UAV operations. This capability facilitates studies
of the interactions between the UAV and its agricultural sur-
roundings, making it well-suited for optimizing operational
strategies, especially when the spatial relationships between
the UAV and plants are critical.
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