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Abstract— This paper introduces a learning-based low-level
controller for quadcopters, which adaptively controls quad-
copters with significant variations in mass, size, and actuator
capabilities. Our approach leverages a combination of imitation
learning and reinforcement learning, creating a fast-adapting
and general control framework for quadcopters that eliminates
the need for precise model estimation or manual tuning. The
controller estimates a latent representation of the vehicle’s system
parameters from sensor-action history, enabling it to adapt
swiftly to diverse dynamics. Extensive evaluations in simulation
demonstrate the controller’s ability to generalize to unseen
quadcopter parameters, with an adaptation range up to 16 times
broader than the training set. In real-world tests, the controller
is successfully deployed on quadcopters with mass differences
of 3.7 times and propeller constants varying by more than
100 times, while also showing rapid adaptation to disturbances
such as off-center payloads and motor failures. These results
highlight the potential of our controller to simplify the design
process and enhance the reliability of autonomous drone
operations in unpredictable environments. Video and code are
at: https://github.com/muellerlab/xadapt_ctrl

I. INTRODUCTION

The agile nature of quadcopters and the necessity for
precise control in dynamic environments create a unique
context for exploring control strategies. Model-based con-
trollers for quadcopters generally rely on estimates of the
vehicle’s properties, including inertia, motor constants, and
other parameters. Notable examples include sliding mode
control [1] and PID controllers [2]. Once these parameters
are estimated, the controller typically requires iterative tuning
through successive experiments to refine its performance.
However, inaccuracies in parameter estimation can directly
lead to execution errors in controller commands. Furthermore,
any modification to the vehicle, such as attaching an extra
payload, could lead to suboptimal performance without
repeating the estimation and tuning processes. Such significant
engineering effort could be eased with a universal controller
that does not require specialized tuning.

In this work, we propose a learning-based low-level
controller designed to control a variety of quadcopters with
notable differences in mass, size, propellers, and motors. Our
controller is also capable of rapidly adapting to unknown in-
flight disturbances such as off-center payloads, motor failures,
and wind.
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Fig. 1: Our adaptive controller can control quadcopters with vast
difference including but not limited to mass, arm length, and
actuators while also show disturbance rejection. (a) Overview of our
hardware setup consisting of two quadcopters with mass differing by
a factor of 3.68, arm length by 3.1 and totally different propellers.
(b) Demonstration of our controller on these two vehicles for the
task of tracking trajectories under disturbances including off-center
payload and wind. We use a single control policy across different
drones and tasks, which is deployed without any vehicle-specific
modifications.

A. Related Work

The development of fixed-parameter controllers, while
foundational, is inherently limited by their lack of real-time
adaptivity to model uncertainties and disturbances. Adaptive
control techniques were introduced to address these unpre-
dicted variations in a system. One of the initial contributions
in this field was the model reference adaptive controller

https://github.com/muellerlab/xadapt_ctrl


(MRAC), an extension of the well-known MIT-rule [3]. The
empirical success of MRAC led to the development of L1

control [4, 5], which offers a promising solution by estimating
the differences between the nominal state transitions predicted
by the reference model and those observed in practice. Such
differences are compensated by allocating a control authority
proportional to the disturbance, effectively driving the system
back to its reference behavior.

However, the performance of the classic L1 formulation
degrades when the observed transitions deviate greatly from
the (usually linear) reference model. This limitation is critical
in scenarios involving large variations between different quad-
copters’ dynamics, as the underlying assumptions on locally
linear disturbances are generally not fulfilled. Recent work
has attempted to overcome these limitations by combining L1

adaptive control with nonlinear online optimization schemes,
such as model predictive control (MPC) [6–8]. These methods
have achieved impressive results, but still require explicit and
accurate knowledge of the reference model, which is crucial
for adaptation.

Recent advances in data-driven control strategies have
shown promising results for quadcopter stabilization [9,
10], or waypoint tracking flight [11, 12], as well as agile
racing against human pilots [13]. Model-free reinforcement
learning in [13] has demonstrated impressive adaptability
to unmodeled disturbances, such as blade flapping effects.
Combining data-driven methods with model-based control
designs has also been proposed to leverage the guaranteed
adaptivity and robustness offered by model-based control.
For instance, some studies have learned policies from model-
based methods like MPC through imitation learning [14, 15].
Another approach is augmenting the learned controller with
classical adaptive control designs during deployment for fast
disturbance estimation and online adaptation [16, 17]. Despite
these advancements, these methods remain tailored to specific
platforms. Transferring the same controller to another vehicle
typically requires retraining or fine-tuning the policy, along
with data collection for the new vehicle.

Zero-shot adaptation across different vehicles has been
demonstrated on quadrupeds [18], highlighting the versatility
of learning-based methods. However, this generalized control
relies on existing internal motor control loops rather than
directly adapting at the motor level. In the case of quadcopters,
the variation in actuators between different vehicles is partic-
ularly significant, with motor constants potentially differing
by orders of magnitude. Consequently, effective adaptation
across different quadcopter platforms must address motor-
level differences directly. Additionally, the high-frequency
nature of motor control increases the risk of crashes due to
inadequate adaptation. These factors, the substantial variation
in actuators and the high-frequency nature of motor control,
pose significant challenges to applying previous methods
of adaptive trajectory control to the problem of extreme
adaptation across quadcopters.

B. Our Contributions

In this work, we present a general framework for learning
low-level adaptive controllers that are effective across a wide
range of quadcopters. Similar to prior research in learning-
based control for aerial robots [9, 12, 19–22], we train the
policy entirely in simulation using reinforcement learning
and deploy it directly to the real world without fine-tuning
(i.e., zero-shot deployment).

While previous works typically rely on slight parameter
randomizations (≈ 20%) around a nominal model, our
approach must handle parameter variations thousands of times
larger. This presents a significant challenge for reinforcement
learning, as such a broad range of variations can hinder
optimization convergence.

To address this challenge, we build on our earlier con-
ference work on learning-based low-level control [23] and
introduce three key technical innovations: (1) a dual training
strategy that combines behavior cloning from specialized
model-based controllers and model-free reinforcement learn-
ing. This combination effectively handles the challenges
of training a low-level controller due to its high-frequency
nature and the low informational density of observations.
(2) A specifically designed reward to provide the low-
level controller with direct feedback for quick adjustments,
allowing it to perform more agile maneuvers, and (3) a
designed-informed reward and domain randomization method
to ensure that the variations in quadcopter designs during
training are consistent with real-world constraints. These
innovations eliminate constraints on slow flight and accurate
state estimation, and widens the range of vehicles our policy
can fly. Our approach significantly outperforms existing
baselines. In addition, it enables the controller to adapt to out-
of-distribution quadcopters up to 16x wider than the training
set and to disturbances for which it was not explicitly trained,
such as wind.

Our work shows a generalized controller for agile and
robust flight of quadcopters with parameter differences of
several orders of magnitude. Such large scale adaptability
will help democratize the process of drone design by enabling
users that lack modeling expertise to control custom-made
vehicles.

II. METHOD

We present our methodology for learning an adaptive
low-level controller for various quadcopters. For clarity, we
provide a list of symbols and notation used throughout the
paper in Table I.

A. Control Structure

Cascade control systems are instrumental in managing
complex dynamic systems by decomposing them into a
hierarchy of simpler nested subsystems. In this structure,
the high-level component focuses on high-level tasks such
as trajectory planning, while the low-level component acts
as the inner control loop to execute the commands from the
high level.



TABLE I: List of Symbols

Notation

x Scalar quantity x Vector quantity (e.g., ω)
xdes Commanded quantity x̂ Estimated quantity
xmin Minimum value xmax Maximum value

State Variables

p Position v Velocity
q Attitude (quaternion) ψ Yaw angle
ω Angular velocity τ Torque
c∑ Mass-normalized total

thrust
F Individual motor forces

a Individual motor speeds apwm Individual motor PWM
commands

Quadrotor Parameters

l Arm length m Mass
J Mass moment of inertia

(MMOI) matrix
Cd Body drag coefficient

CF Propeller constant: thrust-
to-motorspeed-squared ra-
tio

Cτ Propeller constant: torque-
to-thrust ratio

c Size factor for randomiza-
tion

λ The sampled quadrotor

Learning Variables

π Base policy (our low-level
controller)

ϕ Adaptation module

µ Intrinsics encoder et Environmental parameters
zt Intrinsics vector xt State vector
rt Reward

Our controller is designed to function as a low-level
component within this modular control hierarchy. It trans-
lates high-level total thrust and angular velocity commands
into individual motor speeds with adaptation to different
quadcopters. The implementation of low-level adaptation
abstracts away the physical complexities of the system
from the high-level planner, allowing it to focus on high-
level mission tasks without concern for the intricacies of
the underlying hardware. This flexibility also enables our
controller to enhance non-adaptive high-level controllers,
adding adaptability to disturbances and model mismatches,
and thereby improving overall system performance.

B. Learning an Adaptive Controller

An overview of our training strategy is illustrated in
Figure 2. The controller learns to control randomly generated
quadcopters to track diverse trajectories, which are generated
with randomized motion primitives [24]. The training of the
controller employs a dual strategy, combining reinforcement
learning (RL) and behavior cloning (BC) from an expert
model-based controller. We will provide details about each
component during the training process in the following
subsections.

1) Reinforcement Learning: As in our previous conference
work [23], we use RMA [25] for the reinforcement learning
part of our training. We do not make any changes to this part
from our previous conference work, but review it here for
completeness.

Our controller consists of a base policy π, an intrinsics
encoder µ, and an adaptation module ϕ. At time t, the base
policy π takes the current state xt ∈ R17 and the ground-truth
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Fig. 2: An overview of the training process for our adaptive controller.
The policy aims to track reference trajectories in simulation for
various different quadcopters, whose parameters are determined
through a domain randomization process that adheres to general
quadcopter design principles. The training framework employs
a hybrid approach, combining reinforcement learning (RL) with
imitation learning derived from a model-based controller. The
model-based controller, informed by ground-truth model parameters
generated during the randomization process, offers expert supervision
throughout the training phase.

intrinsics vector zt ∈ R8 to output the target motor speeds
at ∈ R4 for all individual motors. The intrinsics vector zt is
a low dimensional encoding of the environment parameters
et ∈ R34, which consist of model parameters or external
disturbances that are key to adaptive control. We use the
intrinsics encoder µ to compress et to zt. This gives us:

zt = µ(et) (1)
at = π(xt, zt) (2)

The current state xt includes the attitude matrix (R9), the
mass-normalized thrust (R), angular velocity (R3), com-
manded total thrust (R) and commanded angular velocity
(R3). The environmental parameter et includes mass, arm
length, propeller constants (torque-to-thrust ratio and thrust-
to-motorspeed-squared ratio), the diagonal entries of MMOI
matrix (R3), body drag coefficients (R3), maximum motor
rotation, motor effective factors (R4), mixer matrix (R4×4),
payload mass, and external torque (R3), which results in an
34 dimensional vector.

The low dimensionality (8) of zt is determined empirically
through a binary search on the dimension of et, aiming to
optimize the learning performance of the policy. The latent
representation of high-dimensional system parameters allows
the base policy to adapt to variations in drone parameters,
payloads, and disturbances such as external force or torque.

During deployment, we do not have access to et and hence
we cannot directly measure zt in the real world. Instead, we
estimate it via the adaptation module ϕ, which uses the
commanded actions and the measured sensor readings from
the latest k steps to estimate it online during deployment as
Equation 3. We can train this adaptation module in simulation
using supervised learning because we have access to the
ground truth intrinsics zt. We minimize the mean squared



error loss ∥z − ẑ∥2 when ẑ is estimated using sensor-action
history of the vehicle tracking online generated random
trajectories. The random trajectory tracking task can provide
a set of rich excitation signals for the adaptation module to
estimate ẑ using the sensor-action history.

The estimated ẑt along with the current state xt is fed into
our base policy π to output motor speed during deployment
as Equation 4. More concretely,

ẑt = ϕ
(
xt−k:t−1,at−k:t−1

)
(3)

at = π(xt, ẑt) (4)

2) Guiding search by imitating a model-based controller:
We implement the base policy π and the intrinsics encoder µ
as Multi-layer perceptrons and jointly train them end-to-end
in simulation. The training is done by an integration of BC
and model-free RL. In our approach, the expert controller
is a model-based low-level controller. The key distinction
from previous work combining reinforcement and imitation
learning [26–28] is that during each training episode, the
ground-truth model parameters of randomized quadcopters
are used to adapt the expert controller. This ensures that our
base policy learns from an expert controller that dynamically
adjusts its behavior whenever the quadcopter model changes.
The BC loss minimizes the mean squared error loss on actions:

LBC(π) = ∥aexp − a∥2 (5)

Reinforcement learning maximizes the following expected
return of the policy π:

RRL(π) = Eτ∼p(τ |π)

[
T−1∑
t=0

γtrt

]
, (6)

where τ = {(x0, a0, r0), (x1, a1, r1)...} is the trajectory of
the agent when executing the policy π, and p(τ |π) represents
the likelihood of the trajectory under π.

Similarly to previous work, we adaptively change the
relative weight between these two losses. The weight of
the BC losses decays exponentially while the weight for RL
increases inversely with training steps so that RL becomes
dominant later in the training process. This training scheme
enables rapid learning of the desired behavior from the expert
controller at the beginning of training and generalization
by RL in the later parts of training. The overall training
framework seeks to maximize the overall reward of the policy
π:

R(π) = (1− α)RRL(π)− αLBC(π) (7)

α = e−0.001tepoch (8)

This learning approach improves the training of the base
policy compared to training solely with RL, as in our previous
conference paper [23]. Figure 3 presents an ablation of the
BC component of the loss. The policy trained with both BC
and RL shows steady improvement in reward and episode
length throughout the learning phase, maintaining an episode
length close to 1 after approximately 10 million steps. In
contrast, the RL-only baseline improves at a slightly slower
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Fig. 3: Comparison of episode rewards (top) and episode lengths
(bottom) for policies trained using both BC and RL, versus RL only,
across 3 random seeds (with the bold line representing the mean
and the shaded area representing the standard error). The episode
length is normalized by dividing the vehicle’s surviving duration by
the maximum episode duration. An episode length of 1 indicates
that the vehicle controlled by the trained policy survives for the
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Fig. 4: We train the policy with torque tracking and with angular
velocity tracking, and plot the episode reward except torque/angular
velocity tracking penalty for 3 random seeds (bold line representing
the mean and shaded area the standard error).

rate, achieving reward similar to the BC-and-RL method
at around 50 million steps. However, the RL-only baseline
does not perform as consistently and begins to diverge after
50 million steps, losing much of its performance gains and
eventually leading to crashes.

3) Reward Design: The adaptive base policy functions as
a low-level controller within the control hierarchy, capable
of tracking arbitrary high-level commands irrespective of the
vehicle being controlled. Our reward design should align with
this objective by incentivizing the agent to track the specified
reference high-level commands and penalizing crashes and



oscillating motions.
The reward at time t is calculated as the sum of the

following quantities:
1) Output Command Smoothing Penalty: −∥at − at−1∥
2) Survival Reward: δt
3) Mass-normalized Thrust Tracking Deviation Penalty:

−∥ct∑ − ct∑
des

∥
4) Torque Tracking Deviation Penalty:

−∥τ t − τ t
des∥

Where δt is the simulation step in the training episode. The
mass-normalized thrust command c∑

des
is given by the high-

level controller along with the commanded angular velocity
ωdes. The commanded torque τdes is given by the rate control
on the commanded angular velocity. In particular,

τdes = JK(ωdes − ω) + ω × (Jω) (9)

Where K is a diagonal gain matrix, which we choose with
values K = diag(20, 20, 4)s−1 to effectively control the
torques in roll, pitch, and yaw axes individually. The higher
gains for roll and pitch (20) prioritize their control over yaw
(4), due to their greater importance for flight stability and
maneuverability.

The output smoothing penalty discourages high-frequency
control commands, which can overheat the quadcopter’s
motors and damage the hardware system during deployment.
The survival reward encourages the quadcopter to learn to fly
longer until the end of the training episode. Finally, both
tracking deviation penalties encourage the quadcopter to
track the given high-level commands by matching its mass-
normalized thrust and torque with the reference commands.

While angular velocity is one of the high-level commands
to track and one of our policy’s observations during deploy-
ment, we prioritize rewarding torque tracking in our learning
framework. Our experiments indicate that this design choice
leads to noticeable improvements in learning speed, stability,
and overall reward. Torque responds directly and immediately
to applied motor speed commands, whereas angular velocity
is derived through sequential integration of the commanded
motor speed. Therefore, the torque tracking reward design can
provide more direct reward after a corrective action, which is
important for training a low-level high-bandwidth controller
like ours, with such high frequency at 500Hz.

We compare the training curves of the policy trained with
torque tracking and that with angular velocity tracking as
shown in Figure 4, keeping all other reward design and
hyperparameters the same. Specifically, we calculate the total
reward per episode, excluding the torque / angular velocity
tracking penalty, to evaluate the performance of the two
policies. The torque tracking baseline improves throughout
the training time steps, whereas the reward of the angular
velocity tracking baseline grows with larger fluctuations and
eventually ends at a lower reward.

4) Quadcopter Randomization: The training of our adap-
tive policy requires a wide spectrum of quadcopters, a
challenge that we address through a carefully crafted ran-
domization process. We propose a randomization method

TABLE II: Ranges of quadcopter and environmental parameters,
along with the end states of the sampled trajectories from the initial
conditions. Parameters without units are dimensionless.

Parameters Training Range Testing Range

Quadcopter Parameters
Mass (kg) [0.226, 0.950] [0.205, 1.841]
Arm length (m) [0.046, 0.200] [0.040, 0.220]
MMOI around x, y (kg·m2) [1.93e-4, 5.40e-3] [1.73e-5, 2.27e-2]
MMOI around z (kg·m2) [2.42e-4, 8.51e-3] [2.10e-4, 3.40e-2]
Propeller constant:
Torque-to-Thrust Ratio (m) [0.0069, 0.0161] [0.0051, 0.0170]

Payload (% of Mass) [18, 40] [18, 40]
Payload location from
Center of Mass
(% of Arm length)

[-50, 50] [-50, 50]

Propeller Constant:
Thrust-to-Motorspeed-squared Ratio [3.88e-8, 8.40e-6] [3.24e-9, 1.02e-4]

Body drag coefficient [0, 0.74] [0, 1.15]
Max. motor speed (rad/s) [800, 8044] [400, 10021]
Motor effectiveness factor [0.7, 1.3] [0.7, 1.3]
Motor time constant (s) 0.01 0.01
Sampled Trajectory End State from Initial Condition
Position (m) [-2, 2] [-2, 2]
Velocity (m/s) [-2, 2] [-2, 2]
Acceleration (m/s2) [-2, 2] [-2, 2]
Total Time (s) [1, 5] 5

that embodies key physical principles and design constraints
of quadcopters, ensuring that the generated variations are
physically plausible. Quadcopters follow a general design
pattern, which typically involves a symmetric structure with
four rotors positioned at the corners of a square frame.
The size of a quadcopter is positively correlated with its
mass, moment of inertia, and other properties, such as motor
power and body drag coefficient. Our method follows the
pattern in randomizing the quadcopters and their respective
dynamic characteristics, instead of simply varying parameters
independently. In particular, we introduce a few key factors
in quadcopter randomization which govern the variation of
some other quadcopter body parameters.

Size Factor. We introduce a size factor c, which uniformly
scales the size and motor strength of the quadcopter. We
randomly sample c from the range of [0, 1]. The arm length
is linearly scaled with c with minimum and maximum values
from the training range of Table II.

l = c(lmax − lmin) + lmin (10)

Assuming a constant density and proportional scaling in all
dimensions, the mass of the quadcopter is directly proportional
to its volume, which in turn scales with the cube of its arm
length. Similarly, the moment of inertia, which depends on
both the mass distribution and the distance from the axis of
rotation, scales approximately with the fifth power of the arm
length under these assumptions. The body drag coefficient,
primarily influenced by the cross-sectional area the quadcopter
presents to the airflow, scales with the square of the arm
length.

We preserve the correlation by defining the mass, moment



of inertia and body drag coefficient as{
m = cm(mmax −mmin) +mmin

cm =
l3−l3min

l3max−l3min

(11){
J = cJ(Jmax − Jmin) + Jmin

cJ =
l5−l5min

l5max−l5min

(12){
Cd = cCd

(Cdmax
− Cdmin

) + Cdmin

cCd
=

l2−l2min

l2max−l2min

(13)

with all minimum and maximum values from Table II.
To reflect the relationship between quadcopter size and

motor strength, we choose to exponentially scale the mo-
tor thrust-to-motorspeed-squared ratio with the size factor.
This design choice ensures that larger quadcopters, which
typically require more powerful motors, are equipped with
appropriately scaled motor capabilities in our simulations.

CF = CFmin

(
CFmax

CFmin

)c

(14)

Finally, all other parameters, such as maximum motor speed
and propeller constant, are linearly scaled with the size factor.
This factor and the associated randomization method ensure
the correlation between quadcopter parameters, reducing the
likelihood of generating physically unrealistic quadcopters
(e.g., a very small and lightweight quadcopter equipped with
overly powerful motors).
Noise. To ensure flexibility and avoid adhering too strictly to
the scaling rule, we introduce a uniformly distributed noise
in the range of [-20%, 20%] to all parameters after they have
been scaled with the size factor c.
Motor Efficiency Factor. We randomize the motor efficiency
factor for each of the four rotors. For each rotor, the simulated
motor speed is calculated by multiplying the intended speed
by this factor. This is to simulate the motor ineffectiveness
due to battery voltage drop, a partial motor failure, or simply
hardware variations.
External Disturbance. At a randomly sampled time during
each episode, the parameters, including mass, inertia, and
the center of mass, are again randomized. This is used to
mimic sudden variations in the quadcopter parameters due
to a sudden disturbance caused by an off-center payload or
wind.

All our training and testing ranges in simulation are listed
in Table II.

III. IMPLEMENTATION DETAILS

This section details the specific implementation of our
approach, including the simulator for the training and evalua-
tion of the policy, the hardware specifications for real-world
experiments, and the neural network architectures with their
training details.
Simulation Environment. We use the Flightmare simula-
tor [29] to train and test our control policies. We implement
the same high-level controller in [30] to generate high-level
commands at the level of body rates and mass-normalized

collective thrust for our low-level controller to track. It
is designed as a cascaded linear acceleration controller
with desired acceleration mimicking a spring-mass-damper
system with natural frequency 2rad/s and damping ratio 0.7.
The desired acceleration is then converted to the desired
total thrust and the desired thrust direction, and the body
rates are computed from this as proportional to the attitude
error angle, with a time constant of 0.2s. The high-level
controller’s inputs are the platform’s state (position, rotation,
angular, and linear velocities) and the reference position,
velocity, and acceleration from the generated trajectory at the
simulated time point. The policy outputs individual motor
speed commands, and we model the motors’ response using
a first-order system with a time constant of 10ms. Each
RL episode lasts for a maximum of 5s of simulated time,
with early termination if the quadcopter height drops below
2cm (equivalent to a crash to the ground), or the quadcopter’s
body rate exceeds 10rad/s. The control frequency of the policy
is 500Hz, and the simulation step is 2ms. We additionally
implement an observation latency of 5ms.

Hardware Details. For all of our real-world experiments, we
use two quadcopters, which differ in mass by a factor of 3.68,
and in arm length by a factor of 3.1. The first one, which we
name large quadrotor has a mass of 985g, a size of 17.7cm
in arm length, a thrust-to-weight ratio of 3.62, a diagonal
inertia matrix of [0.004, 0.008, 0.012]kg·m2 (as expressed in
the z-up body-fixed frame), and a maximum motor speed of
1000rad/s. The second one, small quadrotor, has a mass of
267g, a size of 5.8cm in arm length, a thrust-to-weight ratio
of 3.23, a diagonal inertia matrix of [259e-6, 228e-6, 285e-
6]kg·m2, and a maximum motor speed of 6994rad/s. For each
of our platforms, we use a Qualcomm Robotics RB5 platform
as the onboard computer which runs the high-level control
and our deployed policy, and a mRo PixRacer as the flight
control unit. We use as high-level a PID controller which
takes as input the goal position, velocity, and acceleration
and outputs the mass normalized collective trust and the body
rates. An onboard Inertia Measurement Unit (IMU) measures
the angular velocity and the acceleration of the robot, which
is low-pass filtered to reduce noise and remove outliers. The
high-level commands of the collective thrust and the body
rates, and the low-level measurement of the angular rates and
the acceleration are fed into the deployed policy as inputs.
The policy outputs motor speed commands, which are sent
to the PixRacer via the UART serial port and subsequently
tracked by off-the-shelf electronic speed controllers.

Network Architecture and Training Procedure. The base
policy is a 3-layer MLP with 256-dim hidden layers. This
takes the drone state and the vector of intrinsics as input to
produce motor speeds. The environment factor encoder is a
2-layer MLP with 128-dim hidden layers. The policy and
the value function share the same factor encoding layer. The
adaptation module projects the latest 100 state-action pairs
into a 128-dim representation, with the state-action history
initialized with zeros. Then, a 3-layer 1-D CNN convolves the
representation across time to capture its temporal correlation.



The input channel number, output channel number, kernel
size and stride of each CNN layer are [32, 32, 8, 4], [32, 32,
5, 1], [32, 32, 5, 1]. The flattened CNN output is linearly
projected to estimate zt. For RL, we train the base policy
and the environment encoder using PPO [31] for 100M
steps in PyTorch. We use the reward described in Section II-
B.3. Policy training takes approximately 1.5 hours on an
ordinary desktop machine with 1 GPU. We then train the
adaptation module with supervised learning by rolling out
the student policy. We train with the ADAM optimizer to
minimize MSE loss. We run the optimization process for
10M steps, training on data collected over the last 1M
steps. Training the adaptation module takes approximately
20 minutes. Both networks are trained with the deep learning
framework PyTorch. For more efficient inference and resource
allocation on the onboard computer, we use Mobile Neural
Network (MNN) [32, 33] to convert trained models to MNN
formats to optimize their inference speed and overhead.

IV. SIMULATION EXPERIMENTS

In this section, we evaluate the performance of our
controller through multiple simulation experiments. We begin
by establishing a set of baseline methods and justifying their
selection. Subsequently, we evaluate each method and ours
on the task of trajectory tracking for randomized quadcopters.
The results of these initial tests motivate us to further chal-
lenge our approach on quadcopters that significantly deviate
from the training distribution. The simulation experiments
offer a controlled environment to assess our approach on
aspects of robustness, adaptivity and generalization, thus
paving the way for subsequent hardware experiments.

A. Baselines Setup

We compare our approach with a set of baselines in the
simulation. The task is to evaluate the tracking performance
of a randomly sampled quadcopter along random trajectories.
We randomize quadcopters according to our design-informed
domain randomization technique outlined in Section II-B.4.
The testing range is listed in Table II and a sample of typical
desired trajectories is shown in Figure 5. We choose a nominal
quadcopter model λnorm, which is obtained by setting c = 0.5
when sampling without noise added.

We choose several different sets of high-level and low-
level controllers as baselines from prior work. We choose
PID-PD∗, with PID as the high-level controller and a low-
level proportional-derivative controller with access to the
ground truth model parameters of the sampled vehicle (PD∗);
and PID-PDn with the low-level proportional-derivative
controller only using parameters of λnorm to control all the
sampled quadcopters (PDn). We choose these two baselines
in particular because the PID-PD∗ can serve as the expected
performance upper bound since it has access to ground-truth
model parameters, and the PID-PDn can serve as the lower
bound since it uses only the nominal model aiming to control
all sampled vehicles. The two baselines can be used for
the sanity check for our other proposed baselines and our

Fig. 5: Visualization of typical desired quadcopter trajectories in
3D space during simulated tests. The color gradient represents the
magnitude of the velocity at each point along the trajectory. We
sample 100 trajectories from the origin with the distribution defined
by Table II. The initial conditions of all trajectories are hovering at
origin.

approach, since their performance should be within the range
bounded by these two methods.

In addition, we choose L1-PDn with L1 as a model-
based adaptive high-level controller ([4–6]) and PDn as the
low-level controller; and PID-L1 with L1 as the low-level
adaptive controller. We design our method as a low-level
controller under the assumption that the adaptation across the
diverse parametric range as Table II is more effective at this
control level. In other words, an adaptive high-level controller
solely cannot sufficiently account for the model disparity
in our problem, which aims to control quadcopters with
significant difference in design and actuators. The purpose
of L1 baselines is to validate our assumption by comparing
their performance when the adaptation is at a different control
level.

At the beginning of each experiment, the quadcopter is
spawned with a hovering state. The trajectory to track is
generated with the motion primitive generation algorithm [24]
with the end condition sampled from the test range in Table II.
The experiment is considered successful if the position
tracking error is within 2m at every point of the trajectory.
This failure condition provides a clear distinction between a
successful flight and a complete failure.

B. Results

The results of the simulation experiments are reported in
Table III. We compare the five approaches under three metrics:
(i) the success rate, (ii) the root-mean-square error (RMSE)
in position tracking, and (iii) the RMSE in velocity tracking.
We rank the methods according to the success rate and the
tracking performance.

Given the very large amount of quadcopter variations, PID-
PDn with only access to the nominal model λnorm achieved
the lowest success rate and the largest tracking error. In
contrast, PID-PD∗ has a 100% success rate with the lowest
tracking error, since it uses the ground-truth parameters of the
quadcopter in computing the control inputs. Without access to



TABLE III: We choose 4 baselines: PID-PD∗, PID-PDn, L1-PDn

and PID-L1. The PID-PD∗ has access to all ground-truth system
parameters and thus could be regarded as the expert. We compare
their performance on the task of tracking random quadcopters along
trajectories. The test ranges are defined in Table II. The metrics
are the success rate, the position and velocity RMSE between the
actual quadcopter trajectory and the reference trajectory. The results
are from 100 experiment for each baseline, and the position and
velocity RMSE are obtained only from successful flights.

Success Rate Position Velocity
RMSE± σ (m) RMSE± σ(m/s)

PID-PDn 22% 0.510±0.372 0.845±1.066
L1-PDn 62% 0.186±0.167 0.278±0.392
PID-L1 77% 0.221±0.242 0.357±0.481
PID-Ours 100% 0.154±0.079 0.117±0.068

PID-PD∗
(Expert) 100% 0.061±0.057 0.059±0.050

the ground truth parameters as PID-PD∗ but with adaptation
to the unknown dynamics, the flight performance of L1

controllers significantly increases. However, with adaptation
at high-level, the L1-PDn achieves a lower success rate than
its counterpart PID-L1 with adaptation at low-level. Since
tracking errors are only computed in successful runs, the L1-
PDn achieves a slightly lower tracking error. This result has
shown that an adaptive low-level controller tends to perform
better with the large model disparity across the platforms,
which justifies our assumption for our controller design.

PID-L1 is the strongest baseline after PID-PD∗ in our
simulations. However, its success depends on knowing the
reference model λnorm, while our method operates without
this prior knowledge. Despite this, our method achieves a
100% success rate like PID-PD∗, with only a slightly higher
tracking error. This difference is expected, as PID-PD∗ uses
the ground-truth model parameters, whereas ours does not.

C. Generalization

We evaluate the task of tracking trajectories on held-out
quadrotor parameter range. In particular, we aim to determine
the extent to which deviations from the nominal model cause
our controller and other baseline controllers to fail. We use
the same baselines as in previous sections, with the nominal
model λnorm now obtained at the mid-point of the training
range. For ease of representation, we express λ and λnorm

in a numeric way, with its value equal to the scaling constant
c. Therefore, λnorm = 0.5 and λ ∈ [0, 1] is the training set
of Table II.

We use the metrics

δ = max |λ− λnorm| (15)

to define the extent of the range of sampled quadrotor
parameters. In particular, when δ = 0, the sampled quadrotor
λ is the nominal model λnorm with noises; when δ = 0.5,
λ ∈ [0, 1] is the training set in Table II. We extend δ up
to 8 to evaluate the task of trajectory tracking for randomly
sampled quadrotors, in which the sampling range is 16 times
wider than the training set. Figure 6 provides a visualization
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Fig. 6: Visualization of the differences between the training set
and the δ = 8 testing set. The scatter plot shows 2,000 randomly
sampled quadcopters based on arm length l, mass m, and torque-to-
thrust coefficient Cτ . The testing set exhibits a significantly wider
distribution than the training set.

of the differences between the two sets. We randomly sample
2,000 quadcopters within the δ = 8 range and within the
training range, plotting them as scatter points based on arm
length, mass, and torque-to-thrust coefficient. This illustration
highlights the differences in size, mass, and motor strength
between the training and testing sets. It is evident that the
testing set is significantly outside the training distribution.

The success rate and the position and velocity tracking
error distribution are reported in Figure 7. Our method achieve
above 95% success rate until δ = 8 where it drops to 84%.
In contrast, all other baselines, except for PID-PD∗, exhibit
significant performance degradation as the model mismatch
from the nominal model increases. In addition, the average
position tracking error at δ = 8 of our method is still close
to that at δ = 0, with only 4.6% increase. Compared to the
strongest baseline PID-L1 in Section IV-B whose position
tracking error has grown by 481.1% compared to that at the
nominal model.

V. HARDWARE EXPERIMENTS

In this section, we transition from simulation to hardware
experiments. We first investigate the sim-to-real correlation to
ensure the validity of our simulation results. Subsequently, we
conduct a comparative analysis on disturbance rejection tasks,
comparing our method against the best baseline identified
in our simulation tests. This section aims to validate the
effectiveness and robustness of our approach in real-world
conditions.

A. Sim-to-Real Correlation

We validate our simulation results through two sets of hard-
ware and simulation experiments to examine the simulation-
to-reality gap. We fly the large quadrotor along circular
trajectories with our control framework PID-Ours at 3 speed
settings: Slow, Medium and Fast. Subsequently, we simulate
the same flight paths of the same vehicle with our method



Fig. 7: We evaluate the performance of our method and all baselines
on extended quadrotor parameters range unseen at training time.
We use metrics δ = max |λ− λnorm|, the maximum difference of
all sampled quadcopters away from the nominal model, to define
the quadrotor randomization range. We plot Upper: the success
rate, Middle: the box plot of the position tracking error and Lower:
the box plot of the position tracking error of our method and all
baselines over the parameter randomization range. At each data
point, the result is calculated over 100 experiments. All sampled
quadcopters within the gray shaded area belong to the training range
of Table II. Note that for better visualization, x-axis is not to scale.

again using the Flightmare simulator [29]. The trajectories
involve circling with a 1-meter radius with completion in
different durations: 8s (Slow), 4s (Medium), and 3s (Fast).
The results, illustrated in Figure 8, show the distribution
of position and velocity tracking errors for both sets of
experiments across all speed settings. We also compute the
Pearson Correlation Coefficient [34, 35], which shows a
moderate positive correlation (0.652) between the position
tracking errors in the simulation and real-world tests, with
a statistically significant P-value of 0.002. These findings
suggest that our simulator captures the dynamics of the
real world reasonably well, supporting the reliability of our
simulation results.

Fig. 8: To evaluate the sim-to-real gap, we control the large quadrotor
with our proposed controller along circular trajectories at 3 speed
settings: Slow, Medium and Fast. The figure illustrates the error bars
for the distribution of position and velocity tracking errors. Both plots
exhibits similar trend and magnitudes, suggesting that our simulator
effectively reflects real-world dynamics and thus supporting the
reliability of our results. These results are derived from 10 simulated
flights and 3 real-world flights.

B. Baseline Comparison

We test our approach in the physical world and compare
its performance to the PID-PD∗ controller that has access
to the platform’s parameters and has been specifically tuned
to the platform with in-flight tests. In contrast, our approach
has no knowledge whatsoever of the physical characteristics
of the system and does not calibrate or fine-tune with real-
world flight data. Our hardware experiments are designed to
evaluate our method’s capability to handle disturbances that
are challenging to simulate. We test on the task of tracking a
1m circular trajectory with completion duration of 6s without
any disturbances, under an off-center payload up to 20% of
body mass which is attached to the farthest end on the body
frame of the tested quadcopter, and under wind up to 3.5m/s.
We also test on the task of taking off and hovering with one
single motor experiencing 20% thrust loss. This is achieved
by modifying the quadcopter’s firmware to hard-code the
hardware command sent to the affected motor so that the
thrust produced by this particular actuator is always 80%
of its desired value. We change the firmware to mimic the
partial failure in the system in a controlled manner, instead
of intentionally crashing the vehicle, to avoid actual damage
and facilitate reproducibility. All experiment setup details are
shown in Figure 9.

The high-level controller for both methods is a PID
controller, the same as in Section III. The only variation
in the two control frameworks is the low-level controller.
Therefore, we compare the two approaches by their high-level
command tracking performance. The comparison is conducted
under two metrics: the average tracking error of the (i) mass
normalized thrust and (ii) angular velocity given the high-
level controller’s commands. We define a failure as a situation
where the human operator has to intervene to prevent the



TABLE IV: We compare the performance of our controller PID-
Ours to the best baseline PID-PD∗ controller that uses accurate
model information in Table III, in tasks of disturbance rejections
that are hard to replicate in the simulation. Since the two control
frameworks share the same high-level controller, we choose to
focus on the high-level tracking performance as the comparison
metrics. The comparison is run on the large quadcopter and the small
quadcopter. We compare these approaches’ performance tracking a
circular trajectory at Medium speed under 3 tasks. Disturb Free:
track the trajectory without any disturbances. Off-center Payload:
track the trajectory under an unknown off-center payload. Wind:
track the trajectory under wind. We also evaluate their performance
on an additional task, Thrust Loss: take off and hover with one
single motor experiencing 20% thrust loss. The results are from 3
experiments for each method per task.

Vehicle
Low-level Thrust Average Angular Vel.

Controller RMSE (m/s2) RMSE (rad/s)

Disturb
Free

small
PD∗ 0.132 0.339
Ours 0.280 0.721

large
PD∗ 2.327 0.296
Ours 3.325 0.413

Wind
small

PD∗ 2.477 1.365

Ours 1.659 0.429

large
PD∗ 2.916 0.543

Ours 3.549 0.523

Off-center
Payload

small
PD∗ 0.730 1.360

Ours 0.679 0.510

large
PD∗ 3.420 0.697

Ours 2.808 0.456

Thrust
Loss

small
PD∗ 0.689 1.408

Ours 0.403 0.576

large
PD∗ Fail Fail

Ours 2.167 0.355

quadcopter from crashing. The results of these experiments are
reported in table IV. Note that in nearly all experiments, the
thrust tracking RMSE for large quadrotor is much higher than
that for the small quadrotor. This discrepancy arises because
the large quadrotor has more powerful actuators, which can
induce greater vibrations in the system, subsequently affecting
the accelerometer readings. Therefore, this difference does
not necessarily indicate that the thrust tracking for the large
quadrotor is worse than for the small quadrotor. It is more
appropriate to compare the performance of different methods
within each platform, rather than across them.

Our approach and the PD∗ baseline perform similarly in
disturbance-free experiments, with the PD∗ controller slightly
outperforming ours. The latter difference in performance
is justified since the PD∗ controller is specifically tuned
for each quadcopter. Our method significantly outperforms
the model-based PD∗ in both metrics in the presence of
off-center payload and thrust loss. In particular, PID-PD∗
experiences a total failure in the case of thrust loss on the
large quadrotor platform. Both disturbances create a large

Fig. 9: (a) Large quadrotor and small quadrotor mounted with an
off-center payload. For the large vehicle, we mount a 200g payload
to the farthest end of the body frame from the center of gravity. For
the small one, we mount a 30g payload directly under one of its
motors. (b) Both quadcopters experiencing a 20% thrust loss from
one of its actuator, which is achieved by hard-coding the firmware
code. (c) Small quadrotor tracking a circular trajectory under wind
up to 3.5m/s. Large quadrotor undergoes this experiment with the
same setup.

model mismatch from the nominal model that the PID-PD∗
uses. Our method is able to adapt to the mismatch well with
a similar high-level command tracking error compared to
that at the disturbance-free case. Conversely, the PID-PD∗
controller is not as adaptive. Indeed, its tracking error is
up to 4.53 times higher for thrust tracking and up to 3.15
times for angular velocity tracking. Finally, the purpose of
wind experiments is to evaluate our controller’s performance
under non-constant disturbances. Note that such time-varying
disturbances were not present during training. Our controller
is robust to wind disturbances with a comparable tracking
performance as the PID-PD∗ on the large quadrotor and a
significantly smaller tracking error on the small quadrotor.
The small size and weight of this platform make it more
susceptible to the interaction of the wind with its body and
rotors, which can alter its aerodynamic properties, such as
affecting the effective angle of attack on the rotors. Therefore,
the model mismatch in terms of alteration in aerodynamic
properties is more prominent on the small quadrotor than on
the large quadrotor. Our controller can adapt well to such
disturbances.



VI. CONCLUSION

This work demonstrates how a single adaptive controller
can effectively bridge the gap between high-level planning
and the intricate physical dynamics by adapting to model
disparities between quadcopters down to the motor level. Our
design focuses on creating a low-level controller intended to
replace traditional low-level quadcopter controllers, thereby
eliminating the need for accurate model estimation and
iterative parameter tuning. Our approach leverages a combi-
nation of imitation learning from model-based controllers and
reinforcement learning to address the challenges of training a
sensor-to-actuator controller at high frequencies. The introduc-
tion of an instant reward feedback ensures that the controller
remains responsive and agile. In addition, we develop a
quadcopter randomization method during training that aligns
with real-world constraints, further enhancing its adaptability.
The controller’s ability to estimate a latent representation
of system parameters from sensor-action history, along with
realistic domain randomization, empowers it to generalize
across a broad spectrum of quadcopter dynamics. This
capability extends to unseen parameters, with an adaptation
range up to 16 times broader than the training set. The single
policy trained solely in simulation can be deployed zero-shot
to real-world quadcopters with vastly different designs and
hardware characteristics. It also demonstrates rapid adaptation
to unknown disturbances, such as off-center payloads, wind,
and partial motor failure. These results highlight the potential
of our approach for extreme adaptation for drones and other
robotic systems, while enabling robust control in the face of
real-world uncertainties.
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