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Automated Layout and Control Co-Design of
Robust Multi-UAV Transportation Systems

Carlo Bosio, Mark W. Mueller

Abstract—The joint optimization of physical parameters and
controllers in robotic systems is challenging. This is due to
the difficulties of predicting the effect that changes in physical
parameters have on final performances. At the same time,
physical and morphological modifications can improve robot
capabilities, perhaps completely unlocking new skills and tasks.
We present a novel approach to co-optimize the physical layout
and the control of a cooperative aerial transportation system.
The goal is to achieve the most precise and robust flight when
carrying a payload. We assume the agents are connected to the
payload through rigid attachments, essentially transforming the
whole system into a larger flying object with “thrust modules”
at the attachment locations of the quadcopters. We investigate
the optimal arrangement of the thrust modules around the
payload, so that the resulting system achieves the best disturbance
rejection capabilities. We propose a novel metric of robustness
inspired by H2 control, and propose an algorithm to optimize
the layout of the vehicles around the object and their controller
altogether. We experimentally validate the effectiveness of our
approach using fleets of three and four quadcopters and payloads
of diverse shapes.

I. INTRODUCTION

AUTONOMOUS aerial transportation solutions have been
proven increasingly essential in applications such as

construction, logistics, and load lifting [1]. Being able to
scalably and reliably apply aerial robots to these settings
would not only drastically reduce costs and enhance time
and energy efficiency, but also reduce the need of ground
infrastructures. The deployment at scale of UAVs to these
scenarios is challenging, mainly due to their load capacity and
robustness limitations, especially significant when carrying a
payload. We address the problem of synthesizing a maximally
robust multi-UAV system for collaborative payload lifting and
transportation.

A lot of work has been carried out on design, control and
path planning for single quadcopter transportation systems,
some examples of which are [2]–[7]. However, practical
limitations on dimensions, vehicle complexity, load capacity,
and costs limit the application of such technologies. The
widespread use and cost-effectiveness of smaller vehicles,
such as quadcopters, have made them the preferred choice for
practical applications [8]. Their use in a collaborative fashion
has been proposed, for instance, for construction applications,
but in simplified settings in which each agent individually
carries a small load [9], [10].

Using multiple small vehicles in a cooperative manner
allows to increase the payload, but also introduces greater
complexity in terms of control, due to e.g. aerodynamic
interactions and vibrations, and trajectory planning [11], [12].
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Fig. 1: Four quadcopters cooperatively carrying a single panel payload.

Connecting the vehicles to the payload through tethers is a
popular choice, and allows to distance the agents from the
payload. The dynamics and control of tethered systems have
been extensively investigated, e.g. in [13]. Other examples are
[14], which employed an interconnected structure to enhance
the system stability, [15], which proposed a decentralized
approach to the system’s control, and [16], where improved
disturbance rejection capabilities were achieved.

Compared to the challenges of managing tethered or moving
payloads, which can be complex due to their internal dynam-
ics and limited maneuverability, rigid attachments are often
the preferred option for transportation purposes. Researchers
have investigated hardware aspects, such as adding grippers
to the vehicles [17], and control aspects, such as limited
sensing capabilities [18], adaptive control frameworks [19],
and compensation of internal payload vibrations [20]. The
use of multiple thrust modules [21] introduces additional
parameters to the system, which can be leveraged to enhance
performances. The physical configuration of the lifting agents
around a payload is particularly interesting, because it can
drastically influence the robustness during closed-loop flight.
Selecting the best layout, however, can be complex, due to
the intricate dependencies of flight performance metrics on
physical parameters (which affect the system dynamics, often
in a nonlinear fashion). In previous works, such as [17], [19],
[21], this is done through simple heuristics, or by intuition,
leading to sub-optimal flying systems.

An area addressing such joint control-hardware optimization
problems to achieve superior performances is control co-
design [22]. These methodologies have been successfully
applied to a number of robotics applications, such as hands
[23], legged robots [24], multicopters [25], [26], and winged
drones [27], [28]. The output of these methods is typically a
control policy paired with a set of physical system parameters
which jointly maximize the desired objective.

Our research applies a co-design approach to the synthesis
of collaborative aerial transportation systems. The core idea is
to jointly compute the layout and the control of the combined
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quadcopter-payload system as a single unified problem, with
the goal of maximizing robustness. We do this by formu-
lating and solving an optimization problem derived from
robust control theory for a first order model of the system.
In particular, H2 control theory has been previously used
to derive expressive metrics to capture disturbance rejection
performances [29]. The main contributions of this research are:
• A novel cost function for the evaluation of candidate layout

solutions, effectively capturing the disturbance response and
the input constraints of the cooperative system;

• A computationally efficient automated design tool to deter-
mine the optimal thrust module arrangement to maximize
payload stability and robustness.
The paper is structured as follows. In Section II, we describe

the mathematical framework employed to compute the optimal
layout and to automatically and efficiently generate controllers.
We also describe the control infrastructure adopted in our hard-
ware setup, and show some example outputs of our algorithm
applied to different payload shapes and masses and number
of agents. In Section III, we introduce the experimental setup
and the flight tests we carried out to validate the theoretical
predictions. Finally, in Section IV, we discuss the results, the
relevance of the work and future developments.

II. METHODOLOGY

The co-design problem we solve is intrinsically twofold,
as it involves optimizing over a physical configuration as
well as over control parameters. The question we ask is:
what is the physical placement of N quadcopters around a
payload, and associated controller, such that, the overall flying
system is the most robust possible to disturbances? We cast the
problem as an optimization problem where the cost function
is inspired by H2 control theory, and the decision variables
are the quadcopters’ attachment locations. In the inner loop of
the optimization, a Linear Quadratic Regulator (or LQR, i.e.
the H2-optimal controller) is associated to candidate layouts
for evaluation. This choice, in fact, allows a straightforward
computation of the control (i.e. a linear feedback matrix), and
also an analytic evaluation of the H2-inspired cost function.
More advanced control strategies could be used, at the expense
of a more involved policy optimization, and a more compu-
tationally expensive evaluation of the cost function (using for
example Monte Carlo methods). We make the assumption that
a reliable system for state estimation is available.

A. Modelling

We assume that the payload is characterized by a right prism
geometry, whose mass properties and shape are known. These
assumptions simplify the following mathematical derivation,
but do not limit the space of application. Indeed, many
common payloads, such as packages, boxes, pallets all satisfy
these assumptions. We investigate the quadcopters’ placement
on the payload mid-plane (Fig. 2a), reducing the amount of
decision variables in the optimization problem formulated.
With reference to Fig. 2b, the placement variables, are defined
as the angles θ = [θi, ..., θN ]T describing the attachments
locations along the curve Γ with respect to the centroid of
the payload shape. The attachment is assumed to be obtained
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Fig. 2: a) Extrusion payload geometry and representation of the mid-plane.
Its intersection with the side faces is the curve Γ. b) Schematics of four
quadcopters attached around the payload along Γ. Representation of the local
body reference frame centered at the centroid of Γ, placement variables
defined by the angles θi (i = 1, ..., 4), and disturbance force fd and torque
td.

through a rigid rod, which allows to keep distance between
payload and thrust modules.

The quadcopter-payload ensemble is itself a rigid body,
and can therefore be described by a state vector x =
[pT , ṗT ,γT ,ωT ]T ∈ R12, where p and ṗ are the position
and velocity of the centroid of the object with respect to a
global world reference frame, γ is the Roll-Pitch-Yaw triplet
defining the orientation of the local frame (this is chosen here
for ease of exposition), and ω the angular velocity with respect
to the local body frame.

Each quadcopter is seen as a thrust module providing
four inputs to the system. Therefore, if N quadcopters are
deployed, the thrust input vector is 4N -dimensional, i.e.
u ∈ R4N . We assume that each thrust component is limited
to the interval [ul, uh] ⊂ R.

We linearize the rigid body dynamics model about hover
configuration [30], and decompose the inputs in u = ū+ u′,
in which ū are the feedforward thrusts and u′ are the first
order components of the linearized model. We do the same
for the state vector x = x̄ + x′. We model the disturbances
applied to the system as random Gaussian noise in the form
d = [fTd , tTd ]

T , in which fd ∈ R3 and td ∈ R3 represent
disturbance force and a torque applied to the origin of the
local body reference frame (shown in Fig. 2b).

We can write the continuous-time linearized dynamics of
the quadcopter-payload system (as a whole) as:

ẋ′ = Ax′ +B(θ)u′ +Bd(θ)d. (1)

The dynamics matrix A ∈ R12×12 is obtained by linearization
of the rigid body dynamics equations around hovering condi-
tions and does not depend on the placement variables θ. The
matrices B(θ) ∈ R12×4N and Bd(θ) ∈ R12×6 depend on θ
either directly or through the inertia of the system (which itself
is a function of θ).

B. Control and layout co-design

In this section we present our co-design approach. First, we
show how to derive the optimal H2 controller for the system
of interest, and then how to use this approach to maximize
robustness with respect to the layout variables.

With reference to the H2 optimal control literature [31], we
define an additional auxiliary variable

z = Cx′ +Du′. (2)
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The goal is to find the feedback gain K∗ ∈ R4N×12 (depen-
dent on θ) such that

u′ = −K∗(θ)x′, (3)

and minimize the integral H2 control cost J =
∫∞
0

zT z dt
when the system is subject to the disturbance d. It is a known
result that the optimal linear feedback controller minimizing
the cost function J is obtained as

K∗(θ) = (DTD)−1B(θ)TS1(θ), (4)

where S1(θ) is the solution of the algebraic Riccati equation

ATS1 + S1A− S1B(DTD)−1BTS1 + CTC = 0. (5)

We omitted the dependency on θ in (5) for clarity of writing.
The feedback gain does not depend on the matrix Bd, which
represents how the disturbance affects the dynamics. The
optimal cost value is

J∗ = trace(BT
d S1Bd), (6)

which instead does depend on the matrix Bd. This can be used
to optimize the quadcopters’ attachment locations. However,
this formulation only considers feedback and ignores feedfor-
ward terms, and does not guarantee that the inputs generated
by (3) are feasible. Therefore, we do an additional step: we
compute the closed-loop state covariance S2(θ) of the system
controlled with the optimal feedback defined in (3), subject
to the same white noise disturbance d. This can be computed
using the optimal continuous-time state observer theory, which
leads to the equation:

AfS2 + S2A
T
f +BdB

T
d = 0, (7)

where we defined Af (θ) = A−B(θ)K∗(θ) as the closed-loop
dynamics matrix using the linear feedback of (3). Note that
the Gaussian noise disturbance makes the process ergodic, and
therefore the state sample mean is equivalent to its temporal
mean. The matrix S2(θ) is then an approximation of the
covariance of the first order state linearization x′ when subject
to white noise disturbance.

At this point, we have the feed-forward thrust values, which
are computed from the hovering equilibrium condition, and the
covariance matrix of the inputs Σu = K∗(θ)TS2(θ)K

∗(θ),
obtained through the feedback law. The goal is to maximize the
probability of feasible inputs. We set the element-wise thrust
lower saturation to be ul = ul14N and the upper saturation
to be uh = uh14N , where 14N indicates the 4N -dimensional
vector of ones. We can then write the optimization problem
we are trying to solve as:

max
θ

{
F (uh)− F (ul)

}
(8)

where F (·) is the cumulative distribution over thrust inputs,
and its mean and covariance depend on θ. It is possible to
approximate this cumulative distribution through sampling, but
the sampling approach would lead to a noisy cost function for
our optimization problem, whose variance decreases linearly
with the number of samples used. In addition, sampling-
based methods are computationally expensive and lead to long
solution times. Therefore, we choose to leverage the concept

Point of minimum distance

Level curves (ellipsoids)
𝒖 − ഥ𝒖 𝑇Σ𝒖

−1 𝒖 − ഥ𝒖 = const.

Fig. 3: Two dimensional example of minimum Mahalanobis distance to input
saturations. In this case, the random variables are u1, u2 ∈ [ul, uh]. The
ellipses depicted, centered at the mean ū, represent the level curves of the
Mahalanobis distance and are obtained as (u−ū)TΣ−1

u (u−ū) = q (q being
a positive scalar parameter). The “point of minimum distance” sought is given
by the tangency between the largest ellipsoid contained in the bounding box
and the corresponding saturation hyperplane.

of Mahalanobis distance [32] to quantify the margin between
mean (feedforward thrusts) and the thrust saturations. The
Mahalanobis distance of a point u to a distribution with mean
ū and covariance Σu is defined as:

dM (u; ū,Σu) =

√
(u− ū)Σ−1

u (u− ū). (9)

We extend the concept of Mahalanobis distance of a hy-
perplane from a distribution as the minimum Mahalanobis
distance of a point of the hyperplane from that distribution.
A two dimensional example is shown in Fig. 3. Since in
our case we have a lower and an upper saturation (ul and
uh respectively) for each input component, and four thrust
inputs per quadcopter, there are 8N different hyperplanes to
consider in the input space. Therefore, going back to the goal
of maximizing the probability of feasible inputs, we aim to
maximize the Mahalanobis distance of the thrust saturation
hyperplanes from the input distribution. The optimization
problem can be formulated as:

max
θ

{
min
u

[
dM

(
u; ū(θ),Σu(θ)

) ] }
s.t. ul ≤ u ≤ uh (element-wise) (10)

We are looking for the value θ∗ which maximizes the min-
imum Mahalanobis distance of the thrust saturation hyper-
planes from the feedforward thrust. This minimum distance
is computed by evaluating it on each saturation hyperplane
separately, hence this minimization step is component-wise
and performed over both saturations {ul, uh}. The inner min-
imization over u is necessary because, on each hyperplane, we
are interested in finding the point with minimum distance from
ū. The optimization routine is also described in Algorithm
1. With the superscript expression u(k) we refer to the k-th
component of the vector u, while the expression ua ∈ {ul, uh}
is used to denote which of the two thrust saturation constraints
is active at a given stage of the optimization.

On the computational cost level, there are no particularly
expensive operations. Solving Riccati equations is relatively
fast, and minimizing the Mahalanobis distance from a hyper-
plane is a Quadratic Program (QP). For each update of θ in
the optimization routine, 8N QPs are solved. The solver used
for the outer optimization loop is the Nelder-Mead simplex



4

Algorithm 1 H2 based quadcopter placement optimization

Require: N, quadcopters inertia, object inertia, object shape
Require: weight matrices C and D

Initial guess for θ
while Optimization not completed do

Compute overall system inertia
Compute A, B(θ), Bd(θ) and feedforward ū
Compute S1(θ) and K∗(θ) from (5)
Compute S2(θ) from (7)
Compute input covariance as Σu ← K∗TS2K

∗

Initialize d∗M
for each thrust input component k do

for ua in {ul, uh} do
Solve QP (as in (10)):

d′ ← minu dM (u; ū,Σu)
s.t. ul ≤ u ≤ uh, u(k) = ua

if d′ < d∗M then
d∗M ← d′

end if
end for

end for
Update θ (Nelder-Mead simplex algorithm)

end while

method, details of which can be found in [33] and [34]. In
general, this optimization problem is non-convex, even if the
payload shape is convex. A trivial example is the invariance
to permutation of the θ vector, which alters the optimizer but
not the optimum. There are also cases in which local minima
exist. To make sure the minimum is found in practice, we
run the algorithm multiple times, starting from different initial
guesses.

An important observation to make is that our algorithm deals
with feedback and feedforward in a joint fashion, maximizing
the margin from actuator saturation when the system is in
closed-loop.

C. Control Implementation

For simplicity, we treat the integrated quadcopter-payload
system as a single rigid body, and use the LQR gains computed
in the co-design optimization algorithm 1, which are readily
available as a byproduct. This approach leads to a hierarchical
control infrastructure, in which a single estimator is used
for the overall motion and the quadcopters receive thrust
commands individually through N parallel communication
channels. A block diagram of the control infrastructure is
shown in Fig. 4. More advanced control strategies, such as a
Model Predictive Control using the same LQR weights, could
be used, but this is beyond the co-design focus of this work.
The overall behavior of the controller is dominated by the
choice of some hyperparameters which directly impact the
computation of the H2 cost. First, the disturbance matrix Bd

from (1), that describes how the random disturbance d affects
the dynamics, and, in particular, quantifies its covariance along
different directions in the wrench space. Second, the matrices
C and D from (2), i.e. how the auxiliary variable z is defined.
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Fig. 4: Diagram of the control infrastructure. The specific rates are relative
to the available experimental testbed.

TABLE I: Table of parameters

quadcopter size (motor to motor) 330mm propeller diameter 114.5mm
quadcopter frame mass 525 g battery mass 437 g

For simplicity, the Bd matrix was chosen to weigh the six
disturbance components equally, i.e. Bd(4, 1) = Bd(5, 2) =
Bd(6, 3) = Bd(10, 4) = Bd(11, 5) = Bd(12, 6) = 1. The C
matrix is chosen to just weight the position of the payload
centroid and the system’s yaw angle (i.e. C ∈ R(4+4N)×12).
After evaluating the system’s behavior in simulation, we set
C(1, 1) = C(2, 2) = 0.5 (corresponding to the position on
a horizontal plane x − y), C(3, 3) = 10 (corresponding to
vertical position z), C(4, 9) = 50 (corresponding to yaw
angle), and zero for all the other components. The input
weight matrix D ∈ R(4+4N)×4N was set to the block matrix
D = [04N×4, I4N ]T , where 0m×n denotes the m × n matrix
of all zero elements and Ik the k-dimensional identity.

D. Optimization Results

The optimization framework we developed allows us to
determine the optimal placement of quadcopters for transporta-
tion across different payload shapes, mass values and number
of quadcopters used. In Fig. 5 we show some examples of
optimal placements using the vehicles described in Tab. I as
a reference. It is interesting to observe that the quadcopters
are placed in a way which seems to trade off two different
contributions. On the one hand, the area of the polygon defined
by the quadcopters’ attachment points tends to be maximized
in order to maximize control authority. On the other hand the
distances of the attachment points to the system’s center of
mass tend to be equalized. This is an effect of employing
the Mahalanobis distance as a metric. In fact, even if the
control authority is maximized (i.e. the input covariance Σu

has smaller eigenvalues), we also need the quadcopters to
have a comparable margin between feedforward thrusts ū and
saturation, otherwise the Mahalanobis distance objective is
decreased. Another interesting observation is that a symmetric
object does not lead to a symmetric optimal configuration nec-
essarily, and sometimes the optimum can be counterintuitive.
This is shown by the concave shape in Fig. 5.

III. EXPERIMENTS

The relevant parameters of the vehicles we used as a
reference for layout design and eventually for experiments
can be found in Tab. I. The battery capacity (5300mAh)
has been chosen to guarantee 10 minutes of flight time at
maximum payload. The system theoretically is able to lift an
external payload of ∼ 0.8 kg per quadcopter. It is interesting
to note that the main contribution to the overall inertia of the
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𝑚𝑜𝑏𝑗 = 2kg, N = 4 𝑚𝑜𝑏𝑗 = 2kg, N = 4

𝑚𝑜𝑏𝑗 = 3kg, N = 5 𝑚𝑜𝑏𝑗 = 1.5kg, N = 3

Fig. 5: Optimal layouts for various object shapes and masses using different
number of quadcopters. Our approach can handle both convex and non-convex
polygons. It is interesting to note that, in contrast to common intuition, the
optimal drone placement around a symmetric shape might not be symmetric.

system is due to the quadcopters, since they are attached to
the payload perimeter, and thus at a larger distance from the
overall center of mass. It is also important to highlight that
contributing a greater inertia than the actual payload is in line
with all the ground and aerial transportation systems in use
nowadays. In fact, most of the transportation systems that we
use daily (e.g. trains, planes, cars) have significantly greater
mass and inertia compared to the payload they transport. For
the flight experiments the quadcopters were attached to two
different panels of different masses and shapes. A square
panel (A) of mass 1.02 kg and a concave square (B) of mass
0.71 kg, both of side length 0.45m, were used. On both panels,
analogous experimental procedures have been carried out to
validate our optimization approach. In both cases, for each
panel, the performances of the optimal quadcopter layout were
compared to the ones of a generic suboptimal case. In the case
of Panel (B), as suboptimal configuration a symmetric layout
was chosen. The tested configurations are shown in Fig. 6.
Panel (A) was carried by four quadcopters, while for Panel (B)
only three were used. We performed hovering tests (with and
without wind), response to position reference step command
tests, and disturbance rejection tests when suddenly attaching
a disturbance mass. The rigid attachments have been obtained
by directly bolting the quadcopters to the panels through wood
dowels. The experiments are conducted in an indoor flight
space equipped with a Motion Capture system, and markers
for motion tracking are placed directly on the panels. A picture
of the system flying in the flight space is shown in Fig. 1.

The square panel (A) was used to test the payload capac-
ity of the system. Four quadcopters attached at the corners
were able to lift, hover and land with up to ∼ 2.5 kg.
Significant payload masses, however, are not ideal due to the
narrow margin from the thrust saturation for the actuators.
The reduced control authority causes the system to have
limited disturbance response capabilities, especially within
the spatial limits of the flight space available for experi-
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Fig. 6: Attachment layouts tested on panel A (top) and B (bottom) for
disturbance rejection comparison. Left column: optimal configurations, right
column: sub-optimal configuration. The red cross indicates where the distur-
bance mass is attached in the experiments.

ments. Supplementary videos showing relevant experiments
can be found at https://hiperlab.berkeley.edu/
members/carlo-bosio/automatedlayout/.
A. Hovering

As a first comparison, we report the hovering performances
of the different systems in the various configurations we tested.
The hovering was performed in still air and with a 1m · s−1

wind disturbance. The RMSE values, averaged across five
runs roughly 15 seconds long, of position deviation from
reference and attitude angles can be found in Tabs. II and III.
The optimal configurations for both panels are more stable
and less subject to disturbance. The difference is particularly
significant for Panel (B), which could not withstand the wind
disturbance at all, and showed an unstable behavior (due to
actuator saturation) in all the five trials.

No wind
Panel (A) (B)

Config. S-opt. Opt. % S-opt. Opt. %
x [m] 0.284 0.1390 51 0.320 0.0547 83
y [m] 0.1440 0.0775 46 0.1240 0.0909 27
z [m] 0.0713 0.0674 5.5 0.0690 0.0619 10
Y [rad] 0.0547 0.0537 1.8 0.0687 0.0608 12
P [rad] 0.0235 0.0163 31 0.0231 0.0146 37
R [rad] 0.0213 0.0149 30 0.0206 0.0161 21

TABLE II: Table of RMSE values for position and attitude averaged across five
different undisturbed hovering trials for panels (A) and (B), with the respective
sub-optimal (S-opt. column) and optimal (Opt. column) configurations. The
relative improvement of performances can be seen in the bold columns, in
percentage.

B. Reference Step

As a second performance test, with the system at hovering,
a step change of 1m in the reference set point is applied, and

https://hiperlab.berkeley.edu/members/carlo-bosio/automatedlayout/
https://hiperlab.berkeley.edu/members/carlo-bosio/automatedlayout/
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1m · s−1 wind
Panel (A) (B)

Config. S-opt. Opt. % S-opt. Opt. %
x [m] 0.6374 0.216 66 N/A 0.1285 -
y [m] 0.1520 0.1373 9.6 N/A 0.1144 -
z [m] 0.5203 0.465 10.5 N/A 0.0773 -
Y [rad] 0.1168 0.0890 24 N/A 0.1031 -
P [rad] 0.0257 0.0182 29 N/A 0.0282 -
R [rad] 0.0232 0.0156 33 N/A 0.0407 -

TABLE III: Table of RMSE values for position and attitude averaged across
five different hovering trials when a 1m · s−1 wind is acting on the system.
Data are reported for panels (A) and (B), with the respective sub-optimal
(S-opt. column) and optimal (Opt. column) configurations. The relative
improvement of performances can be seen in the bold columns, in percentage.
The sub-optimal configuration for panel (B) was not able to withstand the
disturbance.

the transient response is recorded. In Fig. 7 the response of
the square Panel (A) system to an applied position reference
step (in particular a 1m offset along the x direction) is shown.
It can be observed that the optimal configuration has a lower
overshoot, but also a faster transient. After six seconds, the
sub-optimal configuration still has not fully recovered from
the event.

C. Disturbance Rejection

As a third performance test, a disturbance mass was at-
tached underneath the panels during flight, specifically at the
attachment points shown by the red cross signs in Fig. 6. The
mass attachment is done through a magnet to guarantee the
repeatability of the experiment across different runs. Both the
state and input data were collected and compared to validate
their consistency with the layout optimization framework. For
Panel (A), the mass was of about 0.5 kg (approximately 10%
of the total mass), whilst for Panel (B), it was of about
0.3 kg (7% of the total mass). Once again, in the case of
Panel (B), after a significant transient, most of the time the
sub-optimal configuration was not able to re-stabilize after
the application of the disturbance. Representative response
plots over time are presented in Fig. 8. From the data, it is
clear that the choice of quadcopter layout has a significant
impact on disturbance rejection performance. The optimal
layout leads to lower oscillations in the attitude of the vehicle,
specifically in the pitch and roll angles, and also recovers more
quickly from disturbances. In comparison, the sub-optimal
layout sees its peak deviation from hovering conditions nearly
double the one of the optimal setup. Another observation is
related to thrust behavior after adding the payload. In the
sub-optimal configuration, the increase in thrust following the
addition of the payload is more noticeable. Additionally, the
steady-state thrust from the quadcopter positioned closest to
the added payload is also higher in the sub-optimal setup.
This suggests that, despite facing disturbances of the same
magnitude, the thrust distribution becomes more uneven in
the sub-optimal case, emphasizing the benefits of an optimal
quadcopter layout.
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Fig. 7: x−z positions of the optimal and sub-optimal configurations on Panel
(A). The position reference step consists of an offset of 1m along x. The
optimal configuration has lower overshoot and faster recovery.

IV. CONCLUSION

In this study, we introduced a novel approach to the layout
and control co-design of cooperative aerial transportation sys-
tems. This methodology offers a novel approach in which the
layout design and control problems are solved jointly through
an optimization routine inspired from H2 control theory. Our
optimization framework allows to cater our system to different
payload shapes, inertias, and quadcopter counts. The choice
of the weight matrices C and D represents the freedom given
to the control designer to obtain the desired performances.
Overall, the main contributions of this paper are:
• A novel, expressive cost function able to capture the robust-

ness of the multi-UAV system;
• An efficient co-design tool to optimally arrange thrust

modules on a payload to maximize robustness;
We also emphasize the idea that dealing with physical param-
eters and control in a joint manner significantly increases the
overall system performances compared to a sequential, siloed
approach (control design following layout design), sometimes
even making the difference between failure and success.

Experimental results validate the effectiveness of our ap-
proach. Flight tests under disturbance highlighted the stability
and robustness of the system, and, most importantly, the agree-
ment between the performance predicted by our optimization
tool and experimental evidence.

Possible extensions for this work include exploring more
advanced control strategies for the deployment stage and doing
online payload parameter estimation in cases of uncertainty. To
conclude, our study showed that the co-design of control and
physical parameters in robotics is a promising path to achieve
superior performance and reliability.
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Fig. 8: Response to step disturbance (added mass) over time. The mass is attached through a magnet, respectively where indicated by the red crosses in Fig.
6. The attachment instant is indicated with a vertical dashed line in the plots. On the top row: position deviation from set point. On the mid row: attitude
response. On the bottom row: mean thrusts across each quadcopter (with dispersion bands in grey). Left: optimal and sub-optimal configurations for panel
(A), right: optimal and sub-optimal configurations for panel (B). The grey area labeled as ‘cnt’ in the bottom row represents the contours of the individual
propeller thrusts (not averaged across each quadcopter). As it is possible to observe, the suboptimal configurations have wider contours.
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