
AgriNav: UAV Simulator for Vision-based
Navigation in Agricultural Environments

Teaya Yang ∗ Mark W. Mueller ∗

∗ High Performance Robotics Lab, Department of Mechanical
Engineering, University of California, Berkeley, CA 94709, USA.

Abstract: We present AgriNav, a simulator for vision-based navigation and data collection
for unmanned aerial vehicles (UAVs) in agricultural environments. Developing autonomous
aerial robots for large-scale agricultural data collection requires significant effort in hardware-
software integration, especially for accurate state estimation and navigation. While many
existing simulators offer image generation features, they are not designed for direct use with
visual-inertial odometry (VIO) packages, which depend on precise sensor calibration, data
synchronization, and specific message formats. We address this challenge by generating synthetic
data that mimic physical sensor outputs and providing a modular communication framework,
enabling users to efficiently experiment with odometry and navigation algorithms without
requiring hardware testing. Using Unity for rendering, we provide pre-built maps and plant
models for rapid testing and simple scene customization. AgriNav is open source and available
at: https://github.com/Teaya-Yang/AgriNav.git.

Keywords: Agricultural Robotics, Machine Vision, Sensing and Automation with UAVs,
Precision Agriculture, Simulation, Robotic Navigation

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) offer an effective solu-
tion for agricultural data collection due to their afford-
ability, agility, and efficiency in large-scale sensing and
monitoring. In recent years, UAVs have been used for
applications such as yield prediction, plant health mon-
itoring, and pesticide spraying(Aslan et al. 2022). How-
ever, collecting data in complex environments like dense
orchards and greenhouses remains challenging due to the
difficulty of developing aerial robots that can navigate
safely and reliably in these settings(Velusamy et al. 2021).
Navigation methods in these environments are often lim-
ited, as Global Navigation Satellite System (GNSS) signals
can be unreliable, and alternatives like Ultra-Wideband
(UWB) or motion capture systems require costly external
infrastructure(Gyagenda et al. 2022).

Vision-based navigation offers a solution to this challenge
by requiring little to no prior knowledge of the environ-
ment, making it highly adaptable across different appli-
cations while reducing dependence on costly sensors like
LiDAR. For instance, Servières et al. (2021) highlights the
advantage of using inexpensive and flexible visual sensors
in combination with modern computer vision algorithms.
For visual-inertial odometry (VIO), state-of-the-art meth-
ods include OpenVINS(Geneva et al. 2020), which employs
MSCKF for efficient feature tracking, OKVIS(Leutenegger
et al. 2015), which uses a sliding-window optimization
approach, and VINS-Mono(Qin et al. 2018), which lever-

⋆ This work was supported by the Agriculture and Food Research
Initiative (AFRI) Competitive Grant no. 2020-67021-32855/project
accession no. 1024262 from the USDA National Institute of Food and
Agriculture and the William C. Webster Graduate Fellowship.

ages factor graph optimization for high-accuracy state
estimation. Meanwhile, for purely visual SLAM, ORB-
SLAM(Mur-Artal et al. 2015) remains a widely used
method due to its robust feature tracking and loop closure
capabilities.

Although most state-of-the-art navigation packages are
open source and have an active user community, their
setup and implementation still require expertise in vision-
based systems and state estimation. Even with detailed
usage instructions, these algorithms are often tailored to
specific hardware setups and require precise sensor specifi-
cations, making adaptation to other platforms challenging.
Furthermore, many existing packages lack direct support
for simulator integration, forcing users to rely on physical
hardware to evaluate and compare navigation methods.

While navigation algorithms focus on hardware integra-
tion, many simulators have been introduced to acceler-
ate the system development process. For instance, Air-
Sim(Shah et al. 2018) emphasizes high-quality visuals to
reduce the sim-to-real gap, while Flightmare(Song et al.
2021) provides a realistic multi-modal sensor suite for
developing control and planning algorithms. More recently,
the Pegasus Simulator(Jacinto et al. 2024) offers similar
realistic visual outputs by leveraging the NVIDIA Isaac
Sim as the base framework. Our previous work, Zha et al.
(2024), improves upon AirSim to better support simula-
tions for agricultural applications. However, a gap remains
between these simulators and the ability to seamlessly
integrate them with state-of-the-art navigation packages.

Constructing a simulator that interfaces with existing nav-
igation algorithms faces several key challenges: i) providing
accurate sensor calibration information, ii) ensuring com-



patibility in sensor output formats, iii) enabling initializa-
tion process for proper localization, and iv) managing the
rendering overhead in image generation. We build upon
our previous work to propose a simulator that addresses
these challenges while maintaining the focus on agricul-
tural applications, making it easier for users to evaluate
and experiment with different navigation methods. In Sec-
tion 2, we introduce the improved modular communication
structure. Section 3 outlines the key features of our sim-
ulator, and example use cases are provided in Section 4.

Path Planner

Depth camera

Stereo camera

State Estimator

IMU

Stereo images

Measurements

State estimates 

UAV 
Controller

Desired
trajectory

UAV 
Dynamics

Motor 
speeds RGB camera RGB 

images

Flight Library
Unity

Drone Object

True
pose

Depth images

Fig. 1. Diagram illustrating the communication structure
within the simulator.

2. SIMULATOR STRUCTURE

A major improvement in our communication framework
compared to our previous work(Zha et al. 2024) is the
removal of the AirSim-based structure. Instead, we adopt
a lightweight communication method to ensure the mod-
ularity of autonomy components, using the ROS-TCP-
Connector(Unity Technologies 2025a) and ROS-TCP-
Endpoint(Unity Technologies 2025b). These packages en-
able direct communication between the flight library and
the rendering engine in the form of ROS messages. This ap-
proach also ensures compatibility with various navigation
packages built within the ROS framework. A schematic
illustrating the communication between different compo-
nents through ROS is shown in Fig. 1.

2.1 Flight Library

The core components of the provided flight library include
a UAV controller and a dynamics simulator, enabling
basic autonomous flight and state feedback. The simulator
node also generates realistic IMU outputs, including one
published in /sensor msg/Imu format, a message type
commonly used for physical sensors in ROS. Users can also
optionally simulate the state estimator and path planner
(shown in orange in Fig. 1), with examples provided in
the following sections. The flight library is designed to
be modular while maintaining realistic sensor outputs,
allowing users to experiment with different navigation
algorithms. Finally, the simulated vehicle pose is published
as a ROS message and sent to Unity, ensuring precise and
up-to-date image feedback.

2.2 Unity Rendering

We use Unity as the rendering engine for its accessibility
and low hardware requirements. Our simulator includes

Fig. 2. (a) Example scenes built using provided models
in Unity. (b) Drone object components including
simulated Realsense D455 camera as shown in the
Hierarchy window of Unity Editor. (c) Example of
image publisher manager as shown in the Inspector
window of Unity Editor, which allows users to specify
topic name, resolution, and publishing frequency.

several pre-built models, such as high-fidelity plant mod-
els generated using the Helios 3D plant modeling frame-
work(Bailey 2019), which can be combined to create re-
alistic agricultural scenes (Fig. 2a). Users can easily edit
the scene by dragging and placing the provided models
within the Unity Editor. A drone object is included by
default, equipped with a simulated camera that emulates
the sensors of the Intel RealSense D455 depth camera
(Fig. 2b). Depending on the application, users can enable
or disable the depth, stereo, or RGB cameras and add
additional cameras to capture more data. As the vehi-
cle moves based on simulated poses, onboard images are
captured from the current drone pose. Additionally, we
provide image publisher scripts with a custom camera
manager (Fig. 2c), allowing users to specify ROS topic
names and adjust the publishing frequency by modifying
parameters. In the provided example, stereo images are
published as monochrome, and depth images are generated
using a depth shader that replicates the D455 depth scale.
AgriNav includes user-friendly Unity editing tools and
detailed instructions, ensuring minimal effort is required
to customize the simulator before use.

3. SUPPORTED FEATURES

The main contribution of our proposed simulator, com-
pared to existing ones, is its ability to support closed-loop
experimentation with odometry packages. While many
simulators generate visual sensor data and inertial mea-
surements, which are essential for visual-inertial odometry



Fig. 3. Unity setup for multiagent simulation. Users only
need to make replicates of the drone object and
specify different vehicle IDs in the Inspector window.

algorithms, they often overlook critical aspects such as
camera calibration, algorithm initialization, and handling
rendering-induced synchronization issues, making direct
integration with existing navigation algorithms difficult.
In this section, we outline the key features in AgriNav that
enable VIO simulation, integrating with OpenVINS as an
example. Additionally, we highlight features that make
our simulator well-suited for a wide range of agricultural
applications.

3.1 Sensor Calibration and Configuration

Most VIO algorithms require configuration files that spec-
ify sensor parameters. These include IMU noise densi-
ties and biases, camera intrinsics, and the transforma-
tion matrices between cameras and IMUs. For instance,
OpenVINS uses the IMU profile in the high-frequency
propagation steps, while camera intrinsic and extrinsic
parameters are needed during measurement updates. Typ-
ically, these values are obtained through calibration tools
such as Kalibr(Rehder et al. 2016), but collecting required
calibration data in simulation is challenging. We address
this issue by setting ground truth values for these criti-
cal parameters and configuring calibration settings based
on sensor datasheets, making integration straightforward
while reflecting true sensor characteristics.

3.2 Initialization for Visual Odometry

In addition to sensor configuration, many navigation al-
gorithms, particularly those relying on visual odometry,
require an initialization process. This typically involves
hand-held camera motion to initialize the algorithm, after
which the state estimates can be published properly. How-
ever, most simulators start the vehicle perfectly at rest,
which could result in failed initialization or dynamic ini-
tialization that leads to poor estimation performance. To
address this, we introduce a short initialization sequence
that lifts the vehicle slightly, allowing the system to ini-
tialize correctly. This process runs autonomously, requiring
the user to simply wait for it to complete before testing
control and planning algorithms. Examples in Section 4
begin with this initialization process.

3.3 Rendering Delay Management

Another significant challenge in vision-based simulation is
the computational overhead required for image generation,
which can vary depending on hardware capabilities. In
some cases, rendering delays prevent images from being
published at the desired frame rate, causing unexpected
navigation performance. However, this is not an issue with
physical cameras. To ensure consistent testing regardless
of compute limitations, we use the simulation time feature
in ROS. Our simulator node publishes to the /clock
topic and subscribes to the relevant image topics, ensuring
that the clock only advances when images are received at
the intended frame rate. Users may choose to use either
the simulated clock or the wall clock based on hardware
considerations. To demonstrate this capability, all example
data in the following section are collected using simulated
time.

3.4 Vision-based Path Planning

Using the provided modular framework, visual information
and VIO outputs can be used to test other autonomy
components, such as vision-based path planners. Users can
easily publish images as ROS messages and subscribe to
them in a planner node, enabling the evaluation of plan-
ning algorithms. In Section 4, we demonstrate an example
using the Rectangular Pyramid Partitioning algorithm
presented in Bucki et al. (2020), which requires depth
images from the simulated depth camera as input. Addi-
tionally, planners that rely on perception information, such
as semantic mapping-based(Ryll et al. 2020) or feature-
based(Wu et al. 2022) motion planning algorithms, can
also be tested within our provided framework.

3.5 Multi-agent Simulation

Many agricultural applications require large-scale data
collection, making multi-agent cooperative missions an
important aspect of system autonomy. Our simulator fully
supports multi-agent simulation while maintaining all the
previously mentioned features. Users can enable multiple
agents by duplicating the drone object and assigning
unique vehicle IDs to each of them, as shown in Fig. 3.
These vehicle IDs must also be provided as arguments to
the simulator node, ensuring proper functionality without
additional modifications.

4. EXAMPLE USE CASES

To showcase the key features of AgriNav, we present
several example use cases that demonstrate its capabilities
in vision-based navigation, planning, and data collection.
These examples illustrate how the simulator can be used
for evaluating VIO performance, analyzing path planning
results, and assessing additional vision-based algorithms
using onboard data.

4.1 VIO Flight Simulation

We begin with a hover test with VIO in the loop, as shown
in Fig. 4a. The vehicle is commanded to hover in front of a
checkerboard to assess state estimation performance. The



Fig. 4. a) Example scene in which hovering test is per-
formed with VIO. b) Visualization of VIO estimated
trajectory and SLAM features used to generate state
estimates. c) Onboard feature tracking results using
stereo images with actively tracked features marked
in green.

Fig. 5. Comaprison of full state estimate between the
VIO estimate and the simulated true state. A rates
controller is used during the hover test, therefore
commands are sent in the form of desired angular
velocities.

initialization sequence detailed in Section 3.2 is executed
first, followed by a controlled hover for a few seconds before
landing. Stereo images and IMU data serve as inputs to
the VIO algorithm, with the resulting odometry used for
state feedback in vehicle control. The executed trajectory
and the features contributing to odometry estimation are
plotted in Fig.4b. Sample onboard stereo images are shown
in Fig.4c, with actively tracked 2D features highlighted in
green. Additionally, we demonstrate the ability to analyze
VIO flight performance in closed-loop using our proposed
framework. Fig. 5 presents the full vehicle state estimated
by the VIO algorithm compared to the simulated ground
truth, as well as the control commands generated which
can be used to evaluate the angular velocity tracking
performance.

4.2 Simulated flight with VIO and Depth-based Planning

We provide an additional example demonstrating how our
simulation framework can be used to test vision-based
planning algorithms alongside vision-based odometry. In

Fig. 6. a) Example scene with executed trajectories. The
true trajectory is marked in white and the estimated
trajectory is marked in blue. b) Samples of onboard
images used as inputs for planning and estimation
algorithms. c) Visualization of the trajectories and
features used for localization. The planner provides
trajectories in a receding-horizon fashion, marked in
green.

this scenario, the drone is commanded to fly through two
rows of trees. We use a vehicle controller similar to that in
the previous section, with the addition of a depth-image-
based planner outlined in Bucki et al. (2020). The planned
trajectories are generated through collision checking using
the depth image, and the optimal trajectory, shown in
green in Fig. 6c, is executed in a receding horizon fashion
until the goal is reached. To visualize system performance,
we also provide samples of the collected onboard images
with the estimated and ground-truth vehicle trajectories
in Fig. 6.

4.3 Detection algorithm evaluation using onboard images

Since additional cameras can be added to the drone object
and published as image topics, our simulator also supports
image data collection for evaluating detection algorithms
in post-processing. In Fig. 7, we present an example where
ground truth annotations for visible fruits are generated
using tree model information. Detection algorithms can
then be evaluated against these annotations in the cap-
tured images.

5. CONCLUSION

In this work, we introduce AgriNav, a simulation frame-
work that addresses the integration gap between vision-



Fig. 7. Example for fruit detection. The white markers are
generated using the groundtruth fruit positions, and
the blue markers are detected fruits using the chosen
algorithm.

based navigation algorithms and existing tools. We achieve
this by implementing a simple yet modular communication
framework, offering customizable maps and object man-
agers, and ensuring that simulated sensor signals reflect
real hardware behavior while managing synchronization
constraints. While our current examples support only
OpenVINS and the RealSense D455 camera, we aim to
expand compatibility with a wider range of sensors and
providing instructions for additional navigation suites, fur-
ther enhancing the simulator’s flexibility for testing auton-
omy algorithms across diverse agricultural applications.
Another important future direction is enhancing the real-
ism of simulated camera outputs by incorporating effects
such as motion blur and lens distortion, as these factors
can also influence vision-based navigation performance.

REFERENCES

Aslan, M.F., Durdu, A., Sabanci, K., Ropelewska, E., and
Gültekin, S.S. (2022). A comprehensive survey of the
recent studies with uav for precision agriculture in open
fields and greenhouses. Applied Sciences, 12(3), 1047.

Bailey, B.N. (2019). Helios: A scalable 3d plant and en-
vironmental biophysical modeling framework. Frontiers
in Plant Science, 10, 1185.

Bucki, N., Lee, J., and Mueller, M.W. (2020). Rectangular
pyramid partitioning using integrated depth sensors
(rappids): A fast planner for multicopter navigation.
IEEE Robotics and Automation Letters, 5(3), 4626–
4633.

Geneva, P., Eckenhoff, K., Lee, W., Yang, Y., and Huang,
G. (2020). Openvins: A research platform for visual-
inertial estimation. In 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA), 4666–4672.
IEEE.

Gyagenda, N., Hatilima, J.V., Roth, H., and Zhmud, V.
(2022). A review of gnss-independent uav navigation
techniques. Robotics and Autonomous Systems, 152,
104069.

Jacinto, M., Pinto, J., Patrikar, J., Keller, J., Cunha, R.,
Scherer, S., and Pascoal, A. (2024). Pegasus simulator:
An isaac sim framework for multiple aerial vehicles sim-

ulation. In 2024 International Conference on Unmanned
Aircraft Systems (ICUAS), 917–922. IEEE.

Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and
Furgale, P. (2015). Keyframe-based visual–inertial
odometry using nonlinear optimization. The Interna-
tional Journal of Robotics Research, 34(3), 314–334.

Mur-Artal, R., Montiel, J.M.M., and Tardos, J.D. (2015).
Orb-slam: A versatile and accurate monocular slam
system. IEEE transactions on robotics, 31(5), 1147–
1163.

Qin, T., Li, P., and Shen, S. (2018). Vins-mono: A robust
and versatile monocular visual-inertial state estimator.
IEEE transactions on robotics, 34(4), 1004–1020.

Rehder, J., Nikolic, J., Schneider, T., Hinzmann, T., and
Siegwart, R. (2016). Extending kalibr: Calibrating the
extrinsics of multiple imus and of individual axes. In
2016 IEEE International Conference on Robotics and
Automation (ICRA), 4304–4311. IEEE.

Ryll, M., Ware, J., Carter, J., and Roy, N. (2020). Se-
mantic trajectory planning for long-distant unmanned
aerial vehicle navigation in urban environments. In
2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 1551–1558. IEEE.

Servières, M., Renaudin, V., Dupuis, A., and Antigny, N.
(2021). Visual and visual-inertial slam: State of the art,
classification, and experimental benchmarking. Journal
of Sensors, 2021(1), 2054828.

Shah, S., Dey, D., Lovett, C., and Kapoor, A. (2018).
Airsim: High-fidelity visual and physical simulation for
autonomous vehicles. In Field and Service Robotics:
Results of the 11th International Conference, 621–635.
Springer.

Song, Y., Naji, S., Kaufmann, E., Loquercio, A., and
Scaramuzza, D. (2021). Flightmare: A flexible quadrotor
simulator. In Conference on Robot Learning, 1147–1157.
PMLR.

Unity Technologies (2025a). Ros-tcp-connector.
URL https://github.com/Unity-Technologies/
ROS-TCP-Connector. Accessed: Feb. 23, 2025.

Unity Technologies (2025b). Ros-tcp-endpoint.
URL https://github.com/Unity-Technologies/
ROS-TCP-Endpoint. Accessed: Feb. 23, 2025.

Velusamy, P., Rajendran, S., Mahendran, R.K., Naseer,
S., Shafiq, M., and Choi, J.G. (2021). Unmanned aerial
vehicles (uav) in precision agriculture: Applications and
challenges. Energies, 15(1), 217.

Wu, X., Chen, S., Sreenath, K., and Mueller, M.W. (2022).
Perception-aware receding horizon trajectory planning
for multicopters with visual-inertial odometry. IEEE
Access, 10, 87911–87922.

Zha, J., Yang, T., and Mueller, M.W. (2024). Agri-fly: sim-
ulator for uncrewed aerial vehicle flight in agricultural
environments. IEEE Access.

https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Endpoint
https://github.com/Unity-Technologies/ROS-TCP-Endpoint

	Introduction
	Simulator Structure
	Flight Library
	Unity Rendering

	Supported Features
	Sensor Calibration and Configuration
	Initialization for Visual Odometry
	Rendering Delay Management
	Vision-based Path Planning
	Multi-agent Simulation

	Example Use Cases
	VIO Flight Simulation
	Simulated flight with VIO and Depth-based Planning
	Detection algorithm evaluation using onboard images

	Conclusion

