
1

A Learning-based Quadcopter Controller with Extreme Adaptation
Dingqi Zhang1, Antonio Loquercio2, Jerry Tang1, Ting-Hao Wang1,

Jitendra Malik3, and Mark W. Mueller1

Abstract—This paper introduces a learning-based low-level
controller for quadcopters, which adaptively controls quadcopters
with significant variations in mass, size, and actuator capabilities.
Our approach leverages a combination of imitation learning
and reinforcement learning, creating a fast-adapting and general
control framework for quadcopters that eliminates the need
for precise model estimation or manual tuning. The controller
estimates a latent representation of the vehicle’s system parameters
from sensor-action history, enabling it to adapt swiftly to diverse
dynamics. Extensive evaluations in simulation demonstrate the
controller’s ability to generalize to unseen quadcopter parameters,
with an adaptation range up to 16 times broader than the training
set. In real-world tests, the controller is successfully deployed
on quadcopters with mass differences of 3.7 times and propeller
constants varying by more than 100 times, while also showing
rapid adaptation to disturbances such as off-center payloads
and motor failures. These results highlight the potential of our
controller to simplify the design process and enhance the reliability
of autonomous drone operations in unpredictable environments.
Video and code are at: https://github.com/muellerlab/xadapt_ctrl

I. INTRODUCTION

The agile nature of quadcopters and the necessity for precise
control in dynamic environments create a unique context
for exploring control strategies. Model-based controllers for
quadcopters generally rely on estimates of the vehicle’s prop-
erties, including inertia, motor constants, and other parameters.
Notable examples include sliding mode control [1] and PID
controllers [2]. Once these parameters are estimated, the
controller typically requires iterative tuning through successive
experiments to refine its performance. However, inaccuracies
in parameter estimation can directly lead to execution errors
in controller commands. Furthermore, any modification to the
vehicle, such as attaching an extra payload, could lead to
suboptimal performance without repeating the estimation and
tuning processes. Such significant engineering effort could
be eased with a universal controller that does not require
specialized tuning.

In this work, we propose a learning-based low-level con-
troller designed to control a variety of quadcopters with
notable differences in mass, size, propellers, and motors. Our
controller is also capable of rapidly adapting to unknown in-
flight disturbances such as off-center payloads, loss of efficiency
in motors, and wind.

A. Related Work
The development of fixed-parameter controllers, while

foundational, is inherently limited by their lack of real-time
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Fig. 1: Our adaptive controller can control quadcopters with large
difference in parameters such as mass, arm length, and actuators
while also show disturbance rejection. (a) Two vehicles flown with
our controller, with mass differing by a factor of 3.68, arm length by
3.1 and motor constant by more than 100x. (b) Demonstration of our
controller on these two vehicles for the task of tracking trajectories
under disturbances including off-center payload and wind. We use
a single control policy across different drones and tasks, which is
deployed without any vehicle-specific modifications.

adaptivity to model uncertainties and disturbances. Adaptive
control techniques were introduced to address these unpredicted
variations in a system. One of the initial contributions in this
field was the model reference adaptive controller (MRAC),
an extension of the well-known MIT-rule [3]. The empirical
success of MRAC led to the development of L1 control [4], [5],
which offers a promising solution by estimating the differences
between the nominal state transitions predicted by the reference
model and those observed in practice. Such differences are
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compensated by allocating a control authority proportional
to the disturbance, effectively driving the system back to its
reference behavior.

However, the performance of the classic L1 formulation
degrades when the observed transitions deviate greatly from
the (usually linear) reference model. This limitation is critical
in scenarios involving large variations between different quad-
copters’ dynamics, as the underlying assumptions on locally
linear disturbances are generally not fulfilled. Some studies have
discussed practical considerations regarding its implementation.
For instance, high adaptive gains in certain scenarios may
introduce numerical challenges and sensitivity to unmodeled
dynamics [6]. It has also been noted that, under specific
conditions, the closed-loop behavior of L1 controllers can
resemble that of linear proportional-integral (PI) controllers [7],
[8], which may limit the expression of its adaptive features. To
address these issues, recent research has explored combining L1

adaptive control with nonlinear online optimization techniques,
such as model predictive control (MPC) [9], [10], [11]. These
methods have achieved impressive results, but still require
explicit and accurate knowledge of the reference model for
adaptation.

Beyond L1, advanced nonlinear adaptive controllers have
been developed to enable agile quadcopter maneuvers in the
presence of uncertainty. Notable approaches include geomet-
ric adaptive tracking control on SE(3) [12] and adaptive
incremental nonlinear dynamic inversion (INDI) [13]. These
controllers improve performance by directly incorporating
nonlinear dynamics and real-time uncertainty estimation into
the control design. A nominal model prior is first estimated and
then used for subsequent compensation of dynamic variations,
enhancing robustness during high-precision maneuvers.

Recent advances in data-driven control strategies have shown
promising results for quadcopter stabilization [14], [15], or
waypoint tracking flight [16], [17], as well as agile racing
against human pilots [18]. Model-free reinforcement learning
in [18] has demonstrated impressive adaptability to unmodeled
disturbances, such as blade flapping effects. Combining data-
driven methods with model-based control designs has also
been proposed to leverage the guaranteed adaptivity and
robustness offered by model-based control. For instance, some
studies have learned policies from model-based methods like
Robust-Tube MPC through imitation learning [19], [20], [21].
Another approach is augmenting the learned controller with
classical adaptive control designs during deployment for fast
disturbance estimation and online adaptation [22], [23]. Despite
these advancements, these methods remain tailored to specific
platforms. Transferring the same controller to another vehicle
typically requires retraining or fine-tuning the policy, along
with data collection for the new vehicle.

Zero-shot adaptation across different vehicles has been
demonstrated on quadrupeds [24], highlighting the versatility
of learning-based methods. However, this generalized control
relies on existing internal motor control loops rather than
directly adapting at the motor level. In the case of quadcopters,
the variation in actuators between different vehicles is partic-
ularly significant, with motor constants potentially differing
by orders of magnitude. Consequently, effective adaptation

across different quadcopter platforms must address motor-
level differences directly. Additionally, the high-frequency
nature of motor control increases the risk of crashes due to
inadequate adaptation. These factors, the substantial variation
in actuators and the high-frequency nature of motor control,
pose significant challenges to applying previous methods of
adaptive trajectory control to the problem of extreme adaptation
across quadcopters.

B. Our Contributions

In this work, we present a general framework for learning
low-level adaptive controllers that are effective across a wide
range of quadcopters. Similar to prior research in learning-
based control for aerial robots [25], [17], [26], [27], [14], [28],
we train the policy entirely in simulation using reinforcement
learning and deploy it directly to the real world without fine-
tuning (i.e., zero-shot deployment).

While previous works typically rely on slight parameter
randomizations (up to 30%) around a nominal model [17], our
approach must handle parameter variations thousands of times
larger. This presents a significant challenge for reinforcement
learning, as such a broad range of variations can hinder
optimization convergence.

To address this challenge, we build on our earlier conference
work on learning-based low-level control [29] and introduce
three key technical innovations: (1) a dual training strategy
that combines imitation learning from specialized model-
based controllers and model-free reinforcement learning. This
combination effectively handles the challenges of training a low-
level controller due to its high-frequency nature and the low in-
formational density of observations. (2) A specifically designed
reward to provide the low-level controller with direct feedback
for quick adjustments, allowing it to perform more agile
maneuvers, and (3) a designed-informed domain randomization
method to ensure that the variations in quadcopter designs
during training are consistent with real-world constraints.
These innovations eliminate constraints on slow flight and
accurate state estimation, and widens the range of vehicles our
policy can fly. Our approach significantly outperforms existing
baselines. In addition, it enables the controller to adapt to
out-of-distribution quadcopters in simulation up to 16x wider
than the training set and to disturbances for which it was not
explicitly trained, such as wind.

Our work shows a generalized controller for agile and robust
flight of quadcopters with parameter differences of several
orders of magnitude. Such large scale adaptability will help
democratize the process of drone design by enabling users that
lack modeling expertise to control custom-made vehicles.

II. METHOD

We present our methodology for learning an adaptive low-
level controller for various quadcopters. A list of symbols and
notations are given in Table I.

A. Control Structure

Cascade control systems are instrumental in managing com-
plex dynamic systems by decomposing them into a hierarchy
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TABLE I: List of Symbols

Notation (for arbitrary symbol x)

x Scalar quantity x Vector quantity (e.g., ω)
xdes Commanded quantity xref Quantity in reference tra-

jectory
xmin Minimum value xmax Maximum value
ẋ Derivative of x w.r.t. time x̂ Estimated quantity

State Variables

p Position v Velocity
q Attitude (quaternion) ψ Yaw angle
ω Angular velocity τ Torque
cΣ Mass-normalized total

thrust
F Individual motor forces

a Individual motor speeds apwm Individual motor Pulse
width modulation (PWM)
commands

Quadrotor Parameters

l Arm length m Mass
J Mass moment of inertia

(MMOI) matrix
Cd Body drag coefficient

CF Propeller constant: thrust-
to-motorspeed-squared ra-
tio

Cτ Propeller constant: torque-
to-thrust ratio

c Size factor for randomiza-
tion

λ The sampled quadrotor

M Mixer matrix

Learning Variables

π Base policy (our low-level
controller)

ϕ Adaptation module

µ Intrinsics encoder et Environmental parameters
zt Intrinsics vector xt State vector
rt Reward

of simpler nested subsystems. For example, in a two-layer
system, the high-level component focuses on high-level tasks
such as trajectory planning, while the low-level component
acts as the inner control loop to execute the commands from
the high level.

Our controller is designed to function as a low-level compo-
nent within this modular control hierarchy. It translates high-
level total thrust and angular velocity commands into individual
motor speeds with adaptation to different quadcopters. The
implementation of low-level adaptation abstracts away the
physical complexities of the system from the high-level planner,
allowing the latter to focus on high-level mission tasks. This
flexibility also enables our controller to enhance non-adaptive
high-level controllers, adding adaptability to disturbances and
model mismatches and thereby improving overall system
performance.

An overview of our training strategy is illustrated in
Figure 2. In simulation, the controller learns to track diverse
trajectories across various quadcopter models. The training
follows a dual approach, combining reinforcement learning
(RL) with imitation learning (IL) from an expert model-based
controller. To ensure efficient and realistic training, we employ
a design-informed randomization law to sample quadcopter
parameters. This approach maintains adherence to real-world
design constraints while enhancing training efficiency. The
generated parameters are then used to update the expert model-
based controller, ensuring it adapts its behavior as the simulated
model changes.

Fig. 2: An overview of the training process for our adaptive controller.
The policy aims to track reference trajectories in simulation for various
different quadcopters. The training framework employs a hybrid
approach, combining reinforcement learning (RL) with imitation
learning derived from a model-based controller. We use a design-
informed randomization strategy to generate various quadcopters that
adhere to general quadcopter design principles

The following subsections provide details on each component
of the training process.

B. Training Framework

We adopt a learning-based framework that decouples policy
learning into a control policy and a real-time estimator,
commonly used in quadruped locomotion [30], [31]. The
detailed training process is shown in Figure 3. We train in two
phases. In the first, we train a low-level controller π given
access to ground-truth system parameters via RL and IL. Since
we don’t have such parameters in the real world, we use a
second phase to learn an adaptation module ϕ. Such a module
predicts the system parameter from a sensor-action history.
The module is trained in simulation using supervised learning.
During deployment, we can use the base policy π and the
adaptation module ϕ to achieve zero-shot adaptation.

Phase 1 Training. Our controller consists of a base policy
π, an intrinsics encoder µ, and an adaptation module ϕ. At
time t, the base policy π takes the current state xt ∈ R8 and
the ground-truth intrinsics vector zt ∈ R8 to output the target
motor speeds at ∈ R4 for all individual motors. The intrinsics
vector zt is a low dimensional encoding of the environment
parameters et ∈ R34, which consist of model parameters or
external disturbances that are key to adaptive control. We use
the intrinsics encoder µ to compress et to zt. This gives us:

zt = µ(et) (1)
at = π(xt, zt) (2)

The current state xt includes the mass-normalized thrust cΣ
(R), angular velocity ω (R3), commanded total thrust cΣ,des (R)
and commanded angular velocity ωdes (R3). The environmental
parameter et includes mass m, arm length l, propeller constants
(torque-to-thrust ratio Cτ and thrust-to-motorspeed-squared
ratio CF ), the diagonal entries of MMOI matrix J (R3), body
drag coefficients Cd (R3), maximum motor rotation, motor
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Fig. 3: The training (top) and the deployment architecture of our
system (bottom). We train in two phases. In the first phase, we train a
low-level controller π via RL and IL. The policy π takes the current
state xt and the intrinsic vector zt, which is a compressed version of
the environment parameters et generated by the module µ. Since we
cannot deploy this policy in the real world because the environment
parameters et are not available, we learn an adaptation module that
takes the sensor-action history and directly predicts the intrinsics
vector zt. This is done in phase two in simulation using supervised
learning. We can finally deploy the base policy π which takes as
input the current state xt and the intrinsics vector ẑt predicted by
the adaptation module ϕ.

effective factors (R4), mixer matrix M (R4×4), payload mass,
and external torque (R3), which results in an 34 dimensional
vector. The mixer matrix M is the inverse of the allocation
matrix. While the allocation matrix maps rotor forces to total
thrust and torques, the mixer matrix maps desired thrust and
torques to individual rotor forces, making it essential for motor
control to determine the commands for individual rotors. A
more detailed derivation is provided, for example, in [32].

The choice of 8 dimensions for the intrinsics vector zt
is determined empirically through a binary search on the
dimension of the intrinsics et, aiming to optimize the learning
performance of the policy. The latent representation of high-
dimensional system parameters allows the base policy to adapt
to variations in drone parameters, payloads, and disturbances
such as external force or torque.

Phase 2 Training. During deployment, we do not have access to
the environmental parameters et and hence we cannot directly
measure the intrinsics zt in the real world. Instead, we estimate
it via the adaptation module ϕ, which uses the commanded
actions and the measured sensor readings from the latest k
steps to estimate it online during deployment as (3). We can
train this adaptation module in simulation using supervised
learning because we have access to the ground truth intrinsics
zt. We minimize the mean squared error loss ∥z− ẑ∥2 when ẑ
is estimated using sensor-action history of the vehicle tracking
trajectories generated with randomized motion primitives [33].
The random trajectory tracking task can provide a set of rich
excitation signals for the adaptation module to estimate ẑ using
the sensor-action history.

The estimated ẑt along with the current state xt is fed into

our base policy π to output motor speed during deployment
as (4). More concretely,

ẑt = ϕ
(
xt−k:t−1,at−k:t−1

)
(3)

at = π(xt, ẑt) (4)

C. Reward Design

The adaptive base policy functions as a low-level controller
within the control hierarchy, capable of tracking arbitrary high-
level commands irrespective of the vehicle being controlled.
Our reward design should align with this objective by incen-
tivizing the agent to track the specified reference high-level
commands and penalizing crashes and oscillating motions.

The reward at time t is calculated as the sum of the following
quantities:

1) Output Smoothness Penalty: −∥at − at−1∥
2) Survival Reward: δt
3) Mass-normalized Thrust Tracking Deviation Penalty:

−∥ctΣ − ctΣ,des∥
4) Torque Tracking Deviation Penalty:

−∥τ t − τ t
des∥

Where δt is the simulation step in the training episode. The
mass-normalized thrust command cΣ,des is given by the high-
level controller along with the commanded angular velocity
ωdes. The commanded torque τdes is given by the rate control
on the commanded angular velocity. In particular,

ω̇des = K(ωdes − ω) (5)
τdes = Jω̇des + ω × (Jω) (6)

Where K is a diagonal gain matrix, which we choose with
values K = diag(20, 20, 4)s−1 to effectively control the torques
in roll, pitch, and yaw axes individually. The higher gains for
roll and pitch (20) prioritize their control over yaw (4), due to
their greater importance for flight stability and maneuverability.

The output oscillation penalty encourages smooth inputs,
discouraging high-frequency control signals. The survival
reward encourages the quadcopter to learn to fly longer until
the end of the training episode. Finally, both tracking deviation
penalties encourage the quadcopter to track the given high-level
commands by matching its mass-normalized thrust and torque
with the reference commands.

D. Guiding search by imitating a model-based controller

We implement the base policy π and the intrinsics encoder
µ as multi-layer perceptrons and jointly train them end-to-end
in simulation. The training is done by an integration of IL and
model-free RL. In our approach, the expert controller is a low-
level proportional-derivative (PD) controller with access to the
sampled vehicle’s ground truth model parameters. It receives
mass-normalized thrust and angular velocity commands from
the high-level controller and computes the desired torque
using (6). The resulting thrust and torque are linearly mapped
to individual motor forces (Fdes) using the mixer matrix (M ),
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which are then converted into motor speeds (aexp), representing
the expert action.

Fdes = M

[
mcΣ,des

τdes

]
(7)

aexp =

√
Fdes

CF
(8)

where the square root operation is applied elementwise.
The key distinction from other work combining reinforce-

ment and imitation learning [34], [35], [36] is that during
each training episode, the ground-truth model parameters of
randomized quadcopters are used to adapt the expert controller.
This ensures that our base policy learns from an expert
controller that dynamically adjusts its behavior whenever the
quadcopter model changes. The IL loss minimizes the mean
squared error loss on actions:

LIL(π) = ∥aexp − a∥2 (9)

Reinforcement learning maximizes the following expected
return of the policy π:

RRL(π) = Eτ∼p(τ |π)

[
T−1∑
t=0

γtrt

]
(10)

where τ = {(x0, a0, r0), (x1, a1, r1)...} is the trajectory of the
agent when executing the policy π, and p(τ |π) represents the
likelihood of the trajectory under π.

We adaptively change the relative weight between these two
losses. The overall training framework seeks to maximize the
overall reward of the policy π:

R(π) = (1− α)RRL(π)− αLIL(π) (11)

α = e−0.001tepoch (12)

where the weight of the IL losses decays exponentially while
the weight for RL increases inversely with training steps so
that RL becomes dominant later in the training process. This
training scheme enables rapid learning of the desired behavior
from the expert controller at the beginning of training and
generalization by RL in the later parts of training.

E. Quadcopter Parametric Randomization

The training of our adaptive policy requires a wide spectrum
of quadcopters, a challenge that we address through a carefully
crafted randomization process rather than relying on uniform
sampling. We propose a randomization method that embodies
key physical principles and design constraints of quadcopters,
ensuring that the generated variations are physically plausible.
Quadcopters follow a general design pattern, which typically
involves a symmetric structure with four rotors positioned at
the corners of a square frame. The size of a quadcopter is
positively correlated with its mass, moment of inertia, and other
properties, such as motor power and body drag coefficient. Our
method follows the pattern in randomizing the quadcopters
and their respective dynamic characteristics, instead of simply
varying parameters independently. In particular, we introduce
a few key factors in quadcopter randomization which govern
the variation of some other quadcopter body parameters.

TABLE II: Ranges of quadcopter and environmental parameters,
along with the end states of the sampled trajectories from the initial
conditions. Parameters without units are dimensionless.

Parameters Training Range Testing Range

Quadcopter Parameters
Mass (kg) [0.226, 0.950] [0.205, 1.841]
Arm length (m) [0.046, 0.200] [0.040, 0.220]
MMOI around x, y (kg·m2) [1.93e-4, 5.40e-3] [1.73e-5, 2.27e-2]
MMOI around z (kg·m2) [2.42e-4, 8.51e-3] [2.10e-4, 3.40e-2]
Propeller constant:
Torque-to-Thrust Ratio (m) [0.0069, 0.0161] [0.0051, 0.0170]

Payload (% of Mass) [18, 40] [18, 40]
Payload location from
Center of Mass
(% of Arm length)

[-50, 50] [-50, 50]

Propeller Constant:
Thrust-to-Motorspeed-squared Ratio [3.88e-8, 8.40e-6] [3.24e-9, 1.02e-4]

Body drag coefficient [0, 0.74] [0, 1.15]
Max. motor speed (rad/s) [800, 8044] [400, 10021]
Motor effectiveness factor [0.7, 1.3] [0.7, 1.3]
Motor time constant (s) 0.01 0.01
Sampled Trajectory End State from Initial Condition
Position (m) [-2, 2] [-2, 2]
Velocity (m/s) [-2, 2] [-2, 2]
Acceleration (m/s2) [-2, 2] [-2, 2]
Total Time (s) [1, 5] 5

Size Factor. We introduce a size factor c, which uniformly
scales the size and motor strength of the quadcopter. We
randomly sample c from the range of [0, 1]. The arm length
is linearly scaled with c with minimum and maximum values
from the training range of Table II.

l = c(lmax − lmin) + lmin (13)

Assuming a constant density and proportional scaling in all
dimensions, the mass of the quadcopter is proportional to its
volume, which in turn scales with the cube of its arm length.
Similarly, the moment of inertia, which depends on both the
mass distribution and the distance from the axis of rotation,
scales approximately with the fifth power of the arm length
under these assumptions. The body drag coefficient, primarily
influenced by the cross-sectional area the quadcopter presents
to the airflow, scales with the square of the arm length.

We preserve the correlation by defining the mass, moment
of inertia and body drag coefficient as{

m = cm(mmax −mmin) +mmin

cm =
l3−l3min

l3max−l3min

(14){
J = cJ(Jmax − Jmin) + Jmin

cJ =
l5−l5min

l5max−l5min

(15){
Cd = cCd

(Cdmax
− Cdmin

) + Cdmin

cCd
=

l2−l2min

l2max−l2min

(16)

with all minimum and maximum values from Table II.
To reflect the relationship between quadcopter size and motor

strength, we choose to exponentially scale the motor thrust-
to-motorspeed-squared ratio with the size factor. This design
choice ensures that larger quadcopters, which typically require
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more powerful motors, are equipped with appropriately scaled
motor capabilities in our simulations.

CF = CFmin

(
CFmax

CFmin

)c

(17)

Finally, all other parameters, such as maximum motor speed
and propeller constant, are linearly scaled with the size factor.
This factor and the associated randomization method ensure
the correlation between quadcopter parameters, reducing the
likelihood of generating physically unrealistic quadcopters (e.g.,
a very small and lightweight quadcopter equipped with overly
powerful motors).
Noise. To ensure flexibility and allow for the fact that real
systems will not perfectly follow these scaling rules, we
introduce a uniformly distributed noise in the range of [-20%,
20%] to all parameters after they have been scaled with the
size factor c.
Motor Effectiveness Factor. We randomize the motor effec-
tiveness factor for each of the four rotors so that the motor
will produce a force different than expected. For each rotor,
the simulated motor speed is calculated by multiplying the
intended speed by this factor. This is to simulate the motor
ineffectiveness due to battery voltage drop, a damaged propeller,
or simply hardware variations.
External Disturbance. At a randomly sampled time during
each episode, the parameters, including mass, inertia, and the
center of mass, are again randomized. This is used to mimic
sudden variations in the quadcopter parameters due to a sudden
disturbance caused by an off-center payload.

All our training and testing ranges in simulation are listed
in Table II.

III. IMPLEMENTATION DETAILS

This section details the specific implementation of our
approach, including the simulator for the training and evaluation
of the policy, the hardware specifications for real-world
experiments, and the neural network architectures with their
training details.
Simulation Environment. We use the Flightmare simula-
tor [37] to train and test our control policies. We implement
the same high-level controller in [38] to generate high-level
commands at the level of body rates and mass-normalized
collective thrust for our low-level controller to track. It is
designed as a cascaded linear acceleration controller with
desired acceleration mimicking a spring-mass-damper system
with natural frequency 2rad/s and damping ratio 0.7. The
desired acceleration is then converted to the desired total
thrust and the desired thrust direction, and the body rates are
computed from this as proportional to the attitude error angle,
with a time constant of 0.2s. The high-level controller’s inputs
are the platform’s state (position, rotation, angular, and linear
velocities) and the reference position, velocity, and acceleration
from the generated trajectory at the simulated time point. The
policy outputs individual motor speed commands, and we model
the motors’ response using a first-order system with a time
constant of 10ms. Each RL episode lasts for a maximum of 5s
of simulated time, with early termination if the vehicle loses

more than 10m from its starting height, or the quadcopter’s
body rate exceeds 10rad/s. The control frequency is 500Hz,
which is also the simulation step. We additionally implement
an measurement latency of 5ms.

Hardware Details. For all of our real-world experiments, we
use two quadcopters, which differ in mass by a factor of 3.68,
and in arm length by a factor of 3.1. The first one, which we
name large quadrotor has a mass of 985g, a size of 17.7cm
in arm length, a thrust-to-weight ratio of 3.62, a diagonal
inertia matrix of [0.004, 0.008, 0.012]kg·m2 (as expressed in
the z-up body-fixed frame), and a maximum motor speed of
1000rad/s. The second one, small quadrotor, has a mass of
267g, a size of 5.8cm in arm length, a thrust-to-weight ratio
of 3.23, a diagonal inertia matrix of [259e-6, 228e-6, 285e-
6]kg·m2, and a maximum motor speed of 6994rad/s. For each
of our platforms, we use a Qualcomm Robotics RB5 platform
as the onboard computer which runs the high-level control at
50Hz and our deployed policy at 500Hz, and a mRo PixRacer
as the flight control unit. We use as high-level a PID controller
which takes as input the goal position, velocity, and acceleration
and outputs the mass normalized collective trust and the body
rates. An onboard Inertia Measurement Unit (IMU) measures
the angular velocity and the acceleration of the robot, which
is low-pass filtered to reduce noise and remove outliers. The
high-level commands of the collective thrust and the body rates,
and the low-level measurement of the angular rates and the
acceleration are fed into the deployed policy as inputs. The
policy outputs motor speed commands, which are sent to the
PixRacer via the UART serial port and subsequently tracked
by off-the-shelf electronic speed controllers. The real-world
experiment is performed indoors with a motion capture system
running. The motion capture is only used for evaluating the
system’s performance in experiments and for feedback to the
high-level controller, but it does not provide any feedback to
our policy.

Network Architecture and Training Procedure. The base
policy is a 3-layer MLP with 256-dim hidden layers. This takes
the drone state and the vector of intrinsics as input to produce
motor speeds. The environment factor encoder is a 2-layer
MLP with 128-dim hidden layers. The policy and the value
function share the same factor encoding layer. The adaptation
module projects the latest 100 state-action pairs into a 128-dim
representation, with the state-action history initialized with
zeros. We selected a window size of 100 as it provides good
performance while keeping the network lightweight. Then, a
3-layer 1-D CNN convolves the representation across time to
capture its temporal correlation. The input channel number,
output channel number, kernel size and stride of each CNN
layer are [32, 32, 8, 4], [32, 32, 5, 1], [32, 32, 5, 1]. The
flattened CNN output is linearly projected to estimate the
intrinsics vector zt. For RL, we train the base policy and
the environment encoder using PPO [39] for 100M steps in
PyTorch. We use the reward described in Section II-C. Policy
training takes approximately 1.5 hours on an ordinary desktop
machine with 1 NVIDIA GeForce RTX 4060 GPU. We then
train the adaptation module with supervised learning by rolling
out the student policy. We train with the ADAM optimizer
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to minimize MSE loss. We run the optimization process for
10M steps, training on data collected over the last 1M steps.
Training the adaptation module takes approximately 20 minutes.
Both networks are trained with the deep learning framework
PyTorch. For more efficient inference and resource allocation
on the onboard computer, we use Mobile Neural Network
(MNN) [40], [41] to convert trained models to MNN formats to
optimize their inference speed and overhead. Table III presents
the average inference time measured on the RB5 platform
for onboard computation. To meet the required 500Hz control
frequency, the combined inference time of the controller policy
and adaptation module must be less than or equal to 2ms. MNN
satisfies this requirement with a total average inference time
of 0.165ms, whereas PyTorch exceeds the limit with a total of
78.850ms, making real-time onboard inference infeasible.

TABLE III: The average inference time for the PyTorch and MNN
frameworks measured over a 10-second window on the Qualcomm
Robotics RB5 platform.

Mean Inference Time±σ (ms)

PyTorch MNN
Low-level Controller (π) 73.626±2.692 0.078±0.003
Adaptation Module (ϕ) 5.224±0.708 0.087±0.005

IV. SIMULATION EXPERIMENTS

In this section, we evaluate the performance of our con-
troller through multiple simulation experiments. We begin by
establishing a set of baseline methods and justifying their
selection. Subsequently, we evaluate each method and ours on
the task of trajectory tracking for randomized quadcopters. The
results of these initial tests motivate us to further challenge
our approach on quadcopters that significantly deviate from
the training distribution. The simulation experiments offer a
controlled environment to assess our approach on aspects of
robustness, adaptivity and generalization, thus paving the way
for subsequent hardware experiments.

A. Baselines Setup

We compare our approach with a set of baselines in the
simulation. The task is to evaluate the tracking performance
of a randomly sampled quadcopter along random trajectories.
We randomize quadcopters according to our design-informed
domain randomization technique outlined in Section II-E. The
testing range is listed in Table II and a sample of typical
desired trajectories is shown in Figure 4. We choose a nominal
quadcopter model λnorm, which is obtained by setting c = 0.5
when sampling without noise added.

We choose several different sets of high-level and low-
level controllers as baselines from prior work. We include
the implementation details of all baselines in Appendix A.
Most baseline names follow the format high-level controller-
low- level controller, with exceptions explicitly noted. First, we
include PID-PD∗ and PID-PDn as reference baselines. PID-
PD∗ serves as an upper performance bound, as its low-level PD
controller has access to the ground-truth model parameters of
each sampled quadcopter. This makes it equivalent to the expert

controller used during training, as described in Section II-D. In
contrast, PID-PDn serves as a lower performance bound, since
its low-level PD controller only uses nominal parameters from
the model λnorm and does not adapt to individual quadcopters.
These two baselines provide a sanity check: any effective
adaptation method should achieve performance within this
range. To ensure that the adaptation task is handled entirely by
the low-level controller, all high-level controllers in both the
baselines and our framework use the same control parameters
across all tested vehicles. These control gains are tuned
specifically to optimize performance on the nominal model
λnorm.

Next, we include L1-PDn and PID-L1 as additional baselines
for evaluating our method. L1-PDn employs the L1 adaptive
high-level controller ([4], [5]) to compensate for model un-
certainties while keeping the low-level PD controller fixed. In
contrast, PID-L1 applies L1 as a low-level adaptive controller.
These baselines serve a dual purpose: they act as additional
benchmarks for evaluating our approach while also validating
our core assumption about adaptation. We design our method
as a low-level controller under the assumption that adaptation
across the diverse parametric range in Table II is more effective
when handled at this control level. In other words, an adaptive
high-level controller alone cannot sufficiently compensate for
the model disparity in our problem, which involves controlling
quadcopters with significant differences in design and actuators.
The L1 baselines allow us to test this assumption by comparing
their performance when adaptation occurs at different control
levels.

Finally, we compare our method to state-of-the-art adaptive
controllers. We include Geo-A, a geometric adaptive controller
that operates at both high and low levels [12] so is an exception
to our naming convention. We also include PID-INDI-A, which
combines a PID high-level controller with a low-level adaptive
INDI controller [13]. These baselines provide further context
on how our method compares to established nonlinear adaptive
control techniques.

At the beginning of each experiment, the quadcopter is
spawned with a hovering state. The trajectory to track is
generated with the motion primitive generation algorithm [33]
with the end condition sampled from the test range in Table II.
The experiment is considered successful if the position tracking
error is within 2m at every point of the trajectory.

B. Results

The results of the simulation experiments are reported in
Table IV. We compare the five approaches under three metrics:
(i) the success rate, (ii) the maximum position tracking error,
(iii) the root-mean-square error (RMSE) in position tracking,
and (iv) the RMSE in velocity tracking. We rank the methods
according to the success rate and the tracking performance.

Given the very large amount of quadcopter variations, PID-
PDn with only access to the nominal model λnorm achieved the
lowest success rate and the largest tracking error. In contrast,
PID-PD∗ has a 100% success rate with the lowest tracking error,
since it uses the ground-truth parameters of the quadcopter in
computing the control inputs. Without access to the ground truth
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Fig. 4: Visualization of typical desired quadcopter trajectories in
3D space during simulated tests. The color gradient represents the
magnitude of the velocity at each point along the trajectory. We
sample 50 trajectories from the origin with the distribution defined
by Table II. The initial conditions of all trajectories are hovering at
origin.

TABLE IV: We choose 6 baselines: PID-PD∗, PID-PDn, L1-PDn,
PID-L1, Geo-A and PID-INDI-A. The PID-PD∗ has access to all
ground-truth system parameters and thus could be regarded as the
expert. We compare their performance on the task of tracking random
quadcopters along trajectories. The test ranges are defined in Table II.
The metrics are the success rate, the maximum position tracking
error, the position and velocity RMSE between the actual quadcopter
trajectory and the reference trajectory. The results are from 100
experiment for each baseline.

Success Max Pos. Position Velocity
Rate Err (m) RMSE± σ (m) RMSE± σ(m/s)

PID-PDn 22% 1.565 0.510±0.372 0.845±1.066
L1-PDn 62% 1.105 0.186±0.167 0.278±0.392
Geo-A 64% 1.033 0.128±0.160 0.174±0.263
PID-INDI-A 67% 0.333 0.063±0.060 0.075±0.082
PID-L1 77% 1.304 0.221±0.242 0.357±0.481
PID-Ours 100% 0.311 0.148±0.075 0.129±0.066

PID-PD∗
(Expert) 100% 0.221 0.061±0.057 0.059±0.050

parameters as PID-PD∗ but with adaptation to the unknown
dynamics, the flight performance of L1 controllers significantly
increase. However, with adaptation at high-level, the L1-PDn

achieves a lower success rate than its counterpart PID-L1

with adaptation at low-level. Since tracking errors are only
computed in successful runs, the L1-PDn achieves a slightly
lower tracking error. This result has shown that an adaptive low-
level controller tends to perform better with the large model
disparity across the platforms, which justifies our assumption
for our controller design.

The two nonlinear adaptive baselines Geo-A and PID-INDI-
A both show better tracking performance than L1 controllers.
Specifically, PID-INDI-A achieves the lowest tracking error
in successful flights among all methods. However, both
baselines achieve a similar success rate of approximately
65%. Specifically, we often observe them failing near the
boundaries of the adaptation range, where the dynamics
deviate significantly from the nominal model. Moreover, their
performance relies on prior knowledge of the reference model
λnorm, and INDI-A in particular also requires access to current
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Fig. 5: Visualization of the differences between the training set
and the δ = 8 testing set. The scatter plot shows 2,000 randomly
sampled quadcopters based on arm length l, mass m, and torque-to-
thrust coefficient Cτ . The testing set exhibits a significantly wider
distribution than the training set.

motor speed measurements and accurate estimates of angular
acceleration and torque, whereas our method operates without
such information. Despite this, our method achieves a 100%
success rate and the lowest maximum position error among all
baselines, with only a slightly higher average tracking error
than the expert controller with access to the true parameters.

C. Generalization

We evaluate the task of tracking trajectories on held-out
quadrotor parameter range. In particular, we aim to determine
the extent to which deviations from the nominal model cause
our controller and other baseline controllers to fail. We use
the same baselines as in previous sections, with the nominal
model λnorm now obtained at the mid-point of the training
range. For ease of representation, we express λ and λnorm in
a numeric way, with its value equal to the scaling constant c.
Therefore, λnorm = 0.5 and λ ∈ [0, 1] is the training set of
Table II.

We use the metrics

δ = max |λ− λnorm| (18)

to define the extent of the range of sampled quadrotor
parameters. In particular, when δ = 0, the sampled quadrotor
λ is the nominal model λnorm with noises; when δ = 0.5,
λ ∈ [0, 1] is the training set in Table II. We extend δ up
to 8 to evaluate the task of trajectory tracking for randomly
sampled quadrotors, in which the sampling range is 16 times
wider than the training set. Figure 5 provides a visualization
of the differences between the two sets. We randomly sample
2,000 quadcopters within the δ = 8 range and within the
training range, plotting them as scatter points based on arm
length, mass, and torque-to-thrust coefficient. This illustration
highlights the differences in size, mass, and motor strength
between the training and testing sets. It is evident that the
testing set is significantly outside the training distribution.
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Fig. 6: We evaluate the performance of our method and all baselines
on extended quadrotor parameters range unseen at training time. We
use metrics δ = max |λ − λnorm|, the maximum difference of all
sampled quadcopters away from the nominal model, to define the
quadrotor randomization range. We plot Top: the success rate, Middle:
the box plot of the position tracking error and Bottom: the box plot
of the position tracking error of our method and all baselines over
the parameter randomization range. At each data point, the result
is calculated over 100 experiments. All sampled quadcopters within
the shaded area between 0 and 0.5 belong to the training range of
Table II. Note that for better visualization, the x-axis is not to scale.

The success rate and the position and velocity tracking error
distribution are reported in Figure 6. Our method achieves
near 100% success rate until δ = 8 where it drops to 95%.
In contrast, all other baselines, except for PID-PD∗, exhibit
significant performance degradation as the model mismatch
from the nominal model increases. In addition, the average
position tracking error at δ = 8 of our method is still close
to that at δ = 0, with only 37.0% increase. Compared to
the strongest baseline PID-L1 in terms of success rate in
Section IV-B whose position tracking error has grown by
483.7% compared to that at the nominal model.

Fig. 7: To evaluate the sim-to-real gap, we control the large quadrotor
with our proposed controller along circular trajectories at 3 speed
settings: Slow, Medium and Fast. The figure illustrates the error bars
for the distribution of position and velocity tracking errors. Both plots
exhibit similar trends and magnitudes, suggesting that our simulator
effectively reflects real-world dynamics and thus supports the reliability
of our results. These results are derived from 10 simulated flights and
3 real-world flights.

V. HARDWARE EXPERIMENTS

In this section, we transition from simulation to hardware
experiments. We first investigate the sim-to-real correlation to
ensure the validity of our simulation results. Subsequently, we
conduct a comparative analysis on disturbance rejection tasks,
comparing our method against the best baseline identified in
our simulation tests.

A. Sim-to-Real Correlation

We validate our simulation results through two sets of
hardware and simulation experiments to examine the simulation-
to-reality gap. We fly the large quadrotor along circular
trajectories with our control framework PID-Ours at 3 speed
settings: Slow, Medium and Fast. Subsequently, we simulate
the same flight paths of the same vehicle with our method
again using the Flightmare simulator [37]. The trajectories
involve circling with a 1-meter radius with completion in
different durations: 8s (Slow), 4s (Medium), and 3s (Fast).
The results, illustrated in Figure 7, show the distribution
of position and velocity tracking errors for both sets of
experiments across all speed settings. We also compute the
Pearson Correlation Coefficient [42], [43], which shows a
moderate positive correlation (0.652) between the position
tracking errors in the simulation and real-world tests, with a
statistically significant P-value of 0.002. These findings suggest
that our simulator captures the dynamics of the real world
reasonably well, supporting the reliability of our simulation
results.

B. Baseline Comparison

We test our approach in the physical world and compare
its performance to the PID-PD∗ controller that has access
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TABLE V: We compare the performance of our controller PID-Ours to the best baseline PID-PD∗ controller that uses accurate model
information in Table IV, in tasks of disturbance rejections that are hard to replicate in the simulation. Since the two control frameworks
share the same high-level controller, we measure performance on tracking high-level commands and other metrics used in simulation, i.e.,
maximum position error, position, and velocity errors. The comparison is run on the large quadcopter and the small quadcopter. We compare
these approaches’ performance tracking a circular trajectory at Medium speed under 3 tasks. Disturb Free: track the trajectory without any
disturbances. Off-center Payload: track the trajectory under an unknown off-center payload. Wind: track the trajectory under wind. We also
evaluate their performance on an additional task, Thrust Loss: take off and hover with one single motor experiencing 20% thrust loss. Note
that the maximum position error is not reported for this task because it involves a setpoint rather than a trajectory; hence, the maximum
position error would be the position error at takeoff. The results are from 3 experiments for each method per task.

Vehicle
Low-level Thrust Average Angular Max Pos. Position Velocity
Controller RMSE (m/s2) RMSE (rad/s) Err (m) RMSE (m) RMSE (m/s)

Disturb Free
small

PD∗ 0.132 0.339 0.094 0.017 0.022
Ours 0.280 0.721 0.098 0.033 0.047

large
PD∗ 2.327 0.296 0.108 0.046 0.132
Ours 3.325 0.413 0.122 0.057 0.197

Wind
small

PD∗ 2.477 1.365 0.245 0.175 0.328
Ours 1.659 0.429 0.191 0.130 0.205

large
PD∗ 2.916 0.543 0.576 0.072 0.188
Ours 3.549 0.523 0.341 0.076 0.131

Off-center Payload
small

PD∗ 0.730 1.360 0.435 0.260 0.323
Ours 0.679 0.510 0.185 0.130 0.158

large
PD∗ 3.420 0.697 0.703 0.404 0.564
Ours 2.808 0.456 0.253 0.167 0.215

Thrust Loss
small

PD∗ 0.689 1.408 N.A. 0.470 0.389
Ours 0.403 0.576 N.A. 0.325 0.196

large
PD∗ Fail Fail Fail Fail Fail
Ours 2.167 0.355 N.A. 0.572 0.224

to the platform’s parameters and has been specifically tuned
to the platform with in-flight tests. In contrast, our approach
has no knowledge whatsoever of the physical characteristics
of the system and does not calibrate or fine-tune with real-
world flight data. Our hardware experiments are designed to
evaluate our method’s capability to handle disturbances that are
challenging to simulate. We test on the task of tracking a 1m
circular trajectory with completion duration of 6s without any
disturbances, under an off-center payload up to 20% of body
mass which is attached to the farthest end on the body frame
of the tested quadcopter, and under wind up to 3.5m/s. We also
test on the task of taking off and hovering with one single motor
experiencing 20% thrust loss. This is achieved by modifying
the quadcopter’s firmware to hard-code the hardware command
sent to the affected motor so that the thrust produced by this
particular actuator is always 80% of its desired value. We
change the firmware to mimic the partial failure in the system
in a controlled manner, instead of intentionally crashing the
vehicle, to avoid actual damage and facilitate reproducibility.
All experiment setup details are shown in Figure 8.

The high-level controller for both methods is a PID controller,
the same as in Section III. The only variation in the two control
frameworks is the low-level controller. We asses performance
using the same metrics of the simulation experiments. However,
to test the controller’s ability to track desired commands, we
additionally measure the average tracking error of (i) mass-
normalized thrust and (ii) angular velocity based on the high-
level controller’s commands. We define a failure as a situation
where the human operator has to intervene to prevent the

quadcopter from crashing. The results of these experiments are
reported in table V. Note that in nearly all experiments, the
thrust tracking RMSE for large quadrotor is much higher than
that for the small quadrotor. This discrepancy arises because
the large quadrotor has more powerful actuators, which can
induce greater vibrations in the system, subsequently affecting
the accelerometer readings. Therefore, this difference does
not necessarily indicate that the thrust tracking for the large
quadrotor is worse than for the small quadrotor. It is more
appropriate to compare the performance of different methods
within each platform, rather than across them.

Our approach and the PD∗ baseline perform similarly in
disturbance-free experiments, with the PD∗ controller slightly
outperforming ours. The latter difference in performance is
justified since the PD∗ controller is specifically tuned for
each quadcopter. Our method significantly outperforms the
model-based PD∗ in both metrics in the presence of off-center
payload and thrust loss. In particular, PID-PD∗ experiences a
total failure in the case of thrust loss on the large quadrotor
platform. Both disturbances create a large model mismatch
from the nominal model that the PID-PD∗ uses. Our method
is able to adapt to the mismatch well with a similar high-level
command tracking error compared to that at the disturbance-
free case. Conversely, the PID-PD∗ controller is not as adaptive.
Indeed, its tracking error is up to 4.53 times higher for thrust
tracking and up to 3.15 times for angular velocity tracking.
Finally, the purpose of wind experiments is to evaluate our
controller’s performance under non-constant disturbances. Note
that such time-varying disturbances were not present during
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Fig. 8: (a) Large quadrotor and small quadrotor mounted with an
off-center payload. For the large vehicle, we mount a 200g payload
to the farthest end of the body frame from the center of gravity. For
the small one, we mount a 30g payload directly under one of its
motors. (b) Both quadcopters experiencing a 20% thrust loss from
one of its actuator, which is achieved by hard-coding the firmware
code. (c) Small quadrotor tracking a circular trajectory under wind up
to 3.5m/s. Large quadrotor undergoes this experiment with the same
setup.

training. Our controller is robust to wind disturbances with
a comparable tracking performance as the PID-PD∗ on the
large quadrotor and a significantly smaller tracking error
on the small quadrotor. The small size and weight of this
platform make it more susceptible to the interaction of the
wind with its body and rotors, which can alter its aerodynamic
properties, such as affecting the effective angle of attack on the
rotors. Therefore, the model mismatch in terms of alteration
in aerodynamic properties is more prominent on the small
quadrotor than on the large quadrotor. Our controller can
adapt well to such disturbances. Across all sets of experiments,
position and velocity errors correlate with high-level tracking
command errors, as larger high-level errors lead to compounded
position and velocity inaccuracies. This further emphasizes
the importance of robustness and adaptivity of the low-level
controller.

C. Adaptation Analysis

We consider the controller performance for an off-center
payload, using the large quadcopter. The result is shown
in Figure 9. During takeoff, all components of ẑ exhibit

Fig. 9: Visualization of the off-center payload experiment on the large
quadrotor. The plots show: Top: motor speeds commanded by our
low-level controller, Middle: absolute position tracking throughout
the experiment, and Bottom: each element of the estimated 8-dim
intrinsics ẑt. The timeline spans from takeoff to approximately 10
seconds after the payload is added. Shaded regions indicate phase
transitions, with annotations indicating key events. In the bottom plot,
elements of ẑt that exhibit more than a 10% change in their average
value before and after payload attachment are highlighted, showing
the components most affected by the payload disturbance.

variations as the quadrotor stabilizes. The vehicle transitions
from stationary on the ground to takeoff at the commanded
velocity within approximately 0.2 seconds, aligning with the
adaptation module’s time window (100 state-action pairs at
500Hz). This adaptation process is significantly faster than
approaches that rely on online system identification [44], [45],
which typically require 10–15 seconds of flight to converge to
an accurate model estimate.

When the payload is added, multiple components undergo a
sharp transient response, indicating an update in the controller’s
internal representation. The highlighted components show
a sustained shift, suggesting that these dimensions capture
key physical properties such as mass distribution and inertial
variations. In contrast, the average value of ẑ3 and ẑ6 remains
largely unchanged after convergence, suggesting that these
dimensions encode properties that are unaffected by an off-
center payload, such as lateral forces or yaw torque.
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Fig. 10: Comparison of episode rewards (top) and episode lengths
(bottom) for policies trained using both IL and RL, versus RL only,
across 10 consecutive random seeds (with the bold line representing the
mean and the shaded area representing the 95% confidence interval).
The episode length is normalized by dividing the vehicle’s surviving
duration by the maximum episode duration. An episode length of 1
indicates that the vehicle controlled by the trained policy survives for
the entire episode without crashing. For better visualization, we plot
the reward curve in log scale.

TABLE VI: Comparison of average episode reward and length with
95% confidence interval (CI) over the last 10% of the training process
for IL+RL and RL-only policies.

Mean Episode Reward Mean Episode Length
±95% CI ±95% CI

IL+RL -31.72±22.02 0.97±0.05
RL -102.55±76.39 0.79±0.20

VI. ABLATION STUDY

Training a low-level controller that adapts across different
quadrotors involves various complexities. This section presents
an ablation study analyzing the training curves to evaluate the
impact of the IL component and reward design. Additionally,
we examine how the RL and IL components, and our control-
level selection, influence performance.

A. Training Curve Analysis

1) Integration of IL: We adopt a dual strategy which
combines IL and RL and adaptively adjust the relative weight
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Fig. 11: Comparison of episode reward for policies trained with torque
tracking, versus with angular velocity tracking, across 10 consecutive
random seeds (with the bold line representing the mean and the shaded
area representing the 95% confidence interval. The episode reward
does not include the torque/angular velocity reward term as they are
the variation in reward design.

TABLE VII: Comparison of average episode reward with 95%
confidence interval (CI) over the last 10% of the training process
for policies with torque tracking and with angular velocity tracking.
The episode reward does not include the torque or angular velocity
tracking reward for comparability.

Mean Episode Reward
± 95% CI

Torque Tracking -3.91±4.67
Angular Velocity Tracking -8.74± 8.15

between the two losses. This learning approach improves
the training of the low-level controller compared to training
solely with RL, as in our previous conference paper [29].
Figure 10 presents an ablation of the IL component of the loss.
We also report the average episode reward and length with
95% confidence interval (CI) over the last 10% of training
process in Table VI. The policy trained with both IL and
RL exhibits steady improvement in both reward and episode
length throughout the learning phase, maintaining an episode
length close to 1 after approximately 10M steps. In contrast,
the RL-only baseline shows less consistent performance with
a larger variance. Although its episode length approaches
1 around 20M steps, it soon begins to diverge, indicating
instability. Additionally, the RL-only baseline maintains a
consistently lower average reward compared to the IL-and-
RL method, highlighting inferior tracking performance. As
training progresses, the instability worsens, leading to a decline
in reward. To further analyze these components, we conduct an
ablation study in the context of our simulation experiments and
evaluate the roles of the RL and IL components in Section VI-B.

2) Reward Design: We reward torque tracking instead of
angular velocity tracking, as described in Section II-C. While
angular velocity is a high-level command and a key observation,
our experiments show that torque tracking leads to better sim-
to-real transfer.

To support this, we compare policies trained with torque
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Fig. 12: We perform an ablation study under the same experimental
conditions as Figure 6, comparing our method (Ours) against three
variations: (i) RL-Only, which removes the IL component and trains
solely via reinforcement learning, (ii) IL-Only, which trains the
controller exclusively through imitation learning using DAgger [46],
and (iii) End-to-End, a single learned policy with our method but
integrating high-level and low-level controllers. The results of Ours
are taken directly from Figure 6. The results are shown for Top:
success rate, and Bottom: the position tracking error (box plots).
At each data point, the result is calculated over 100 experiments.
All sampled quadcopters within the gray shaded area belong to the
training range of Table II. Note that for better visualization, the x-axis
is not to scale.

tracking and angular velocity tracking in Figure 11, keeping
all other reward components and hyperparameters identical.
Table VII reports the average reward over the last 10% of
training. The torque-tracking policy exhibits stable improve-
ment throughout training, whereas the angular velocity-tracking
policy achieves lower rewards and shows greater fluctuations.
Such behavior not only increases oscillation penalties but
also degrades sim-to-real transfer, as saturated commands can
overheat motors and cause hardware damage. Torque tracking
mitigates these issues by providing a more immediate and direct
learning signal. Since torque responds directly to commanded
motor speed, it enables faster corrections, which is particularly
important for low-level controllers operating at 500Hz. By
contrast, angular velocity is derived through integration, making
its feedback less immediate for RL.

B. Simulation Performance

In this section, we present an ablation study to investigate
the contribution of individual components in our method design
within the context of our simulation experiments. Specifically,
we compare our method against three variations: (i) RL-
Only, which excludes the IL component and relies entirely

on reinforcement learning for training, (ii) IL-Only, which
trains the controller solely through imitation learning using
DAgger [46] without separation of networks and phases as
in our framework, and (iii) End-to-End, which replaces our
hierarchical control structure with a unified policy that directly
fuses high-level and low-level control, trained using our method.
The first two variants provide insight into the significance of
individual training components, extending the analysis from the
training curves in Section VI-A. The third variation focuses
on justifying our design choice for separate control levels.
We perform the experiment on the same generalization task
described in Section IV-C. The success rate and the distribution
of position tracking errors are presented in Figure 12. Note
that the results for Ours are the same as shown in Figure 6.

1) RL and IL Ablation: Both RL-Only and IL-Only experi-
ence a decline in success rate as the model mismatch increases
beyond the training set, ultimately dropping to around 60%.
RL-Only demonstrates a slightly higher success rate than IL-
Only. In terms of tracking error, IL-Only achieves the smallest
distribution among the methods. However, both approaches
exhibit increased tracking error as the model mismatch grows.
At δ = 8, the average tracking error for IL-Only increases by
92.4%, while for RL-Only, it grows by 61.4%, compared to
their respective values at δ = 0. In contrast, our method, which
combines RL and IL, maintains a near 100% success rate
across all levels of model mismatch while achieving consistent
tracking performance. This raises the question: how can the
combination of two methods, each with limited generalization
capability, yield better results?

We hypothesize that it is because IL and RL optimize distinct
objectives. IL focuses on minimizing instantaneous tracking
error, while RL targets both tracking error and success rate.
RL achieves this dual optimization by incorporating a reward
signal for tracking error, as described in Section II-C, and
utilizing episode termination conditions to influence success
rate. As a result, RL may accept higher tracking errors to extend
episode length, thereby improving success rates. This explains
why RL-Only outperforms IL-Only in terms of success rate.
When combined, RL can prioritize success rate optimization,
as the IL loss naturally handles tracking error minimization.
This complementary relationship allows the two methods to
reinforce each other, resulting in improved overall performance.
Future work could explore this hypothesis further, investigating
the underlying mechanisms and conditions that enable a synergy
between IL and RL.

2) End-to-End Evaluation: End-to-End is trained using our
proposed method but as a unified policy that combines high-
level and low-level control. Its input includes the same features
as our policy, along with additional information: position (R3),
velocity (R3), and the difference between the current and goal
positions (R3). Its output, like our policy, is motor speed, which
motivates the name End-to-End. Despite being trained with the
same method and without ablations, End-to-End demonstrates
the lowest success rate and the largest average tracking error
among all tested variations. In contrast, the other variations (RL-
Only, IL-Only and Ours) all utilize a low-level controller. The
failure of End-to-End learning likely comes from the challenge
of jointly encoding both high-level trajectory tracking and low-
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level motor adaptation within a single policy. Maintaining a
modular structure allows each level to focus on distinct aspects
of control, facilitating generalization beyond the training set.

Moreover, when compared to state-of-the-art model-based
methods in Figure 6, its performance is similarly poor. At
δ = 8, End-to-End achieves a success rate of only 28%, which
is marginally better than PID-PDn and L1-PDn, both of which
lack adaptation in the low-level controller. This comparison in
parallel also highlights the importance of separating control
levels and employing an adaptive low-level controller to handle
the large model disparities defined in our problem.

VII. CONCLUSION

This work demonstrates how a single adaptive controller can
effectively bridge the gap between high-level planning and the
intricate physical dynamics by adapting to model disparities
between quadcopters down to the motor level. Our design
focuses on creating a low-level controller intended to replace
traditional low-level quadcopter controllers, thereby eliminating
the need for accurate model estimation and iterative parameter
tuning. Our approach leverages a combination of imitation
learning from model-based controllers and reinforcement
learning to address the challenges of training a sensor-to-
actuator controller at high frequencies. The introduction of
an instant reward feedback ensures that the controller remains
responsive and agile. In addition, we develop a quadcopter
randomization method during training that aligns with real-
world constraints, further enhancing its adaptability. The
controller’s ability to estimate a latent representation of system
parameters from sensor-action history, along with realistic
domain randomization, empowers it to generalize across a broad
spectrum of quadcopter dynamics. This capability extends to
unseen parameters, with an adaptation range up to 16 times
broader than the training set. The single policy trained solely in
simulation can be deployed zero-shot to real-world quadcopters
with vastly different designs and hardware characteristics. It
also demonstrates rapid adaptation to unknown disturbances,
such as off-center payloads, wind, and loss of efficiency in
motors. These results highlight the potential of our approach for
extreme adaptation for drones and other robotic systems, while
enabling robust control in the face of real-world uncertainties.
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Fig. 13: The control diagram of PID-L1.

APPENDIX A
BASELINE IMPLEMENTATION

A detailed explanation of each baseline’s implementation
is provided to support reproducibility. The baselines are
structured into high-level and low-level controllers. Most
baseline names follow the format high-level controller-low-
level controller, with exceptions explicitly noted. For instance,
PID-PD∗ indicates that PID serves as the high-level controller,
while PD∗ represents the low-level controller. Identical control
names imply the same implementation, and explanations are
omitted if they were already described for previous baselines.

A. PID-PD∗

1) PID: The high-level PID controller is implemented as
described in Section III. It generates high-level commands,
including body rates and mass-normalized collective thrust, for
other low-level controllers to track.

2) PD∗: This baseline matches the expert controller used
during training, as outlined in Section II-D. Unlike other
baselines, it has access to ground-truth model parameters for
control calculations. Consequently, it serves as both an expert
reference and a performance upper bound, providing context
for evaluation.

B. PID-PDn

1) PDn: This baseline is similar to PD∗ but calculates
control using only the nominal model λnorm. As such, it
represents a performance lower bound for comparison.

C. PID-L1

1) L1 at Low Level: We implement the L1 adaptive
controller as an augmentation to the PID-PDn control, applying
the adaptive controller at the low level. Beyond serving as a
baseline, it also acts as a counterpart to L1-PDn, which applies
the same adaptation within the high-level control structure. The
comparison between the two methods can validate our design
choice of control hierarchy. The implementation is same to [10]
and the controller’s block diagram is shown in Figure 13. The
L1 control receives the desired motor thrust from PDn and
computes the augmented thrust using the control and adaptation
law defined in (6-13) in [10]. The resulting thrust command is
then converted into motor speed. Unless otherwise specified, all
model constants used for control calculations in this framework
and in all baselines, except PD∗, are derived from the nominal
model.

hiperlab.berkeley.edu/members/
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Fig. 14: The control diagram of L1-PDn

Fig. 15: The control diagram of Geo-A.

D. L1-PDn

1) L1 at High Level: We implement a similar L1 controller
as described previously but the uncertainty is compensated at
the level of thrust and body torque. We refer to the framework
in [47] in which the L1 controller gives thrust and torque
command. The control and adaptation law is defined in (19-24)
in [47]. Figure 14 outlines the block diagram of the controller.

E. Geo-A

This baseline is a geometric adaptive controller both on
the high level and low level, abbreviated as Geo-A, an
exception to our naming convention. We choose Geo-A as a
baseline to contextualize our proposed approach. This method
ensures precise trajectory tracking and robust stabilization for
quadrotors by adapting to uncertainties and disturbances in a
geometrically consistent manner.

We implement the geometric adaptive controller based
on [12], replacing the original geometric attitude controller
with a tilt-prioritized control from [48] to enable tracking
of dynamically infeasible trajectories. Figure 15 provides an
overview. The position controller, based on (23-25) in [12],
computes target acceleration, which is decomposed into target
thrust and target attitude using (14-17) in [48]. The attitude is
processed by tilt-prioritized control ((25-28) in [48]), and the
resulting angular velocity and thrust are sent to the angular
velocity controller ((15-16) in [12]). Finally, thrust commands
are mapped to motor speeds.

F. PID-INDI-A

1) INDI-A: We implement the adaptive INDI controller
based on [13] and the block diagram is detailed in Figure 16.
INDI is a sensor-based control which uses instant sensor
measurement to represent the system dynamics so that to
be more robust to unmodelled uncertainties in the rotation

Fig. 16: The control diagram of PID-INDI-A.

dynamics. To enhance its adaptiveness, [13] introduces onboard
adaptive parameter estimation to update control effectiveness.

The original implementation requires measurements of
angular acceleration, motor speed, and motor speed acceleration.
The setup provides more informative observations than other
baselines and our method, which do not have access to motor
feedback. For a fair comparison, we modify the control law
to reduce reliance on motor feedback, using only motor speed
estimates obtained through a first-order response model with
a time constant of 10ms while preserving the original linear
update adaptation law.

After knowing the desired mass-normalized thrust and
angular velocity from the high-level controller, we can compute
the desired torque using (6). Then we can compute the desired
motor speed command using (7) and (8), yielding:[

mcΣ,des

τdes

]
= M−1Fdes (19)

= M−1CFa
2
des (20)

We want to use instantaneous sensor feedback to compute
the desired motor speed to be against model uncertainty and
disturbance. Therefore, we decompose the thrust and torque
into current measurement and desired value (see (30) and (31)
of [49] for detailed derivations of torque decomposition).

cΣ,des = cΣ + (cΣ,des − cΣ) (21)
τdes = τ + J(ω̇des − ω̇) (22)

So that the effect of unmodeled rotational dynamics is captured
by the measurement of angular acceleration ω̇ and torque τ .
Note the desired angular acceleration is gained through (5).

Similarly, the desired motor speed is decomposed as:[
mcΣ,des

τdes

]
= M−1CFa

2 +M−1CF (a
2
des − a2) (23)

By rearranging the terms, we obtain the following equation to
solve for ades:

a2
des − a2 = C−1

F M

[
m(cΣ,des − cΣ)
J(ω̇des − ω̇)

]
(24)

This equation can then be reformulated into the INDI frame-
work by introducing the control allocation matrices G1 and
G2:

a2
des − a2 = G1(cΣ,des − cΣ) +G2(ω̇des − ω̇) (25)
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with the adaptation law defined as

G(k) = G(k − 1)− µG(k − 1)

([
∆cΣ
∆ω̇

]
−∆(a2)

)[
∆cΣ
∆ω̇

]T
(26)

G =
[
G1 G2

]
(27)

where ∆ denotes the difference between the current and
previous sampled variables. A more detailed analysis on the
stability and performance of this method could be found in [13].
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