
AgriNav: UAV Simulator for Vision-based
Navigation in Agricultural Environments

Teaya Yang ∗ Mark W. Mueller ∗

∗ High Performance Robotics Lab, Department of Mechanical
Engineering, University of California, Berkeley, CA 94709, USA.

Abstract: We present AgriNav, a simulator for vision-based navigation and data collection
for unmanned aerial vehicles (UAVs) in agricultural environments. Developing autonomous
aerial robots for large-scale agricultural data collection requires significant effort in hardware-
software integration, especially for accurate state estimation and navigation. While many
existing simulators offer image generation features, they are not designed for direct use with
visual-inertial odometry (VIO) packages, which depend on precise sensor calibration, data
synchronization, and specific message formats. We address this challenge by generating synthetic
data that mimic physical sensor outputs and providing a modular communication framework,
enabling users to efficiently experiment with odometry and navigation algorithms without
requiring hardware testing. Using Unity for rendering, we provide pre-built maps and plant
models for rapid testing and simple scene customization. AgriNav is open source and available
at: https://github.com/Teaya-Yang/AgriNav.git.

Keywords: Agricultural Robotics, Machine Vision, Sensing and Automation with UAVs,
Precision Agriculture, Simulation, Robotic Navigation

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) offer an effective solu-
tion for agricultural data collection due to their affordabil-
ity, agility, and efficiency in large-scale sensing and moni-
toring. In recent years, UAVs have been used for applica-
tions such as yield prediction, plant health monitoring, and
pesticide spraying (Aslan et al. 2022). However, collecting
data in complex environments like dense orchards and
greenhouses remains challenging due to the difficulty of de-
veloping aerial robots that can navigate safely and reliably
in these settings (Velusamy et al. 2021). Navigation meth-
ods in these environments are often limited, as signals from
the Global Navigation Satellite System can be unreliable,
and alternatives like Ultra-Wideband or motion capture
systems require costly external infrastructure (Gyagenda
et al. 2022).

Vision-based navigation offers a solution to this challenge
by removing the dependency on external infrastructure,
making it adaptable across different environments while
reducing reliance on costly sensors like LiDAR. For in-
stance, Servières et al. (2021) highlights the advantage of
using inexpensive and flexible visual sensors in combina-
tion with modern computer vision algorithms. For visual-
inertial odometry (VIO), widely adopted methods include
OpenVINS (Geneva et al. 2020), which uses the Multi-
State Constraint Kalman Filter (MSCKF) for computa-
tionally efficient state estimation; OKVIS (Leutenegger
et al. 2015), which performs sliding-window optimization

⋆ This work was supported by the Agriculture and Food Research
Initiative (AFRI) Competitive Grant no. 2020-67021-32855/project
accession no. 1024262 from the USDA National Institute of Food and
Agriculture and the William C. Webster Graduate Fellowship.

over past states and landmarks; and VINS-Mono (Qin
et al. 2018), which applies factor graph optimization to
achieve high-accuracy pose estimation. For purely visual
SLAM, ORB-SLAM (Mur-Artal et al. 2015) remains a
popular choice due to its reliable feature tracking and
loop closure capabilities. Although these state-of-the-art
navigation packages are open-source and supported by
active user communities, their setup and implementation
typically require expertise in vision-based systems and
state estimation. They offer excellent support for users
working with commonly used hardware platforms, with
community-shared calibration files and detailed usage in-
structions. However, these resources are primarily tailored
to commercial sensors or existing datasets, making it
challenging to adapt the systems to custom setups or to
evaluate them in simulation without physical hardware.

On the other hand, many simulators have been introduced
to accelerate the system development process. For in-
stance, AirSim (Shah et al. 2018) emphasizes high-quality
visuals to reduce the sim-to-real gap, while Flightmare
(Song et al. 2021) provides a realistic multi-modal sensor
suite for developing control and planning algorithms. More
recently, the Pegasus Simulator (Jacinto et al. 2024) offers
similar realistic visual outputs by leveraging the NVIDIA
Isaac Sim as the base framework. Our previous work (Zha
et al. 2024) builds upon AirSim to better support simula-
tions for agricultural applications. While the photorealistic
rendering capabilities of these simulators are well suited
for dataset generation, a gap remains in their integration
with state-of-the-art navigation packages. Constructing a
simulator that interfaces with existing navigation algo-
rithms faces several key challenges: i) providing accurate
sensor calibration information, ii) ensuring compatibility



in sensor output formats, iii) enabling initialization process
for proper localization, and iv) managing the rendering
overhead in image generation. We build upon our pre-
vious work to propose a simulator that addresses these
challenges while maintaining the focus on agricultural
applications, making it easier for users to evaluate and
experiment with different vision-based navigation meth-
ods for UAVs. In Section 2, we introduce the improved
modular communication structure. Section 3 outlines the
key features of our simulator, and example use cases are
provided in Section 4.

Path Planner

Depth camera

Stereo camera

State Estimator

IMU

Stereo images

Measurements

State estimates 

UAV
Controller

Desired
trajectory

UAV
Dynamics

Motor 
speeds RGB camera RGB 

images

Flight Library
Unity

Drone Object

True
pose

Depth images

Fig. 1. Diagram illustrating the communication structure
within the simulator. Communication between mod-
ules is handled through the ROS framework, support-
ing modular integration of autonomy components.

2. SIMULATOR STRUCTURE

A major improvement in our communication framework
compared to our previous work (Zha et al. 2024) is the
removal of the AirSim-based structure. Instead, we adopt
a lightweight communication method using the unmodified
ROS-TCP-Connector and ROS-TCP-Endpoint packages
developed by the Unity Robotics Hub (Unity Technologies
2025a, Unity Technologies 2025b). These packages estab-
lish TCP-based ROS communication between Unity and
external nodes. We use them as a minimal communication
middleware to link Unity with our provided flight library,
reducing overhead and avoiding the constraints of heavier
simulators like AirSim. This ensures modularity and com-
patibility with a wide range of ROS-based navigation pack-
ages. A schematic illustrating the communication between
different components through ROS is shown in Fig. 1.

2.1 Flight library

The core components of the provided flight library include
a UAV controller and a dynamics simulator, enabling
basic autonomous flight and state feedback. The simulator
node also generates realistic IMU outputs, including one
published in /sensor msgs/Imu format, a message type
commonly used for physical sensors in ROS. Users can also
optionally simulate the state estimator and path planner
(shown in orange in Fig. 1), with examples provided in
the following sections. The flight library is designed to
be modular while maintaining realistic sensor outputs,
allowing users to experiment with different navigation
algorithms. Finally, the simulated vehicle pose is published
as a ROS message and sent to Unity, ensuring precise and
up-to-date image feedback.

Fig. 2. (a) Example scenes built using provided models
in Unity. (b) Drone object components including
simulated Realsense D455 camera as shown in the
Hierarchy window of Unity Editor. (c) Example of
image publisher manager as shown in the Inspector
window of Unity Editor, which allows users to specify
topic name, resolution, and publishing frequency.

2.2 Unity rendering

We use Unity as the rendering engine for its accessibility
and low hardware requirements. Our simulator includes
several pre-built models, such as high-fidelity plant models
generated using the Helios 3D framework (Bailey 2019),
which can be combined to create realistic agricultural
scenes (Fig. 2a). Users can easily edit the scene by dragging
and placing the provided models within the Unity Editor.
A drone object is included by default, equipped with a
simulated camera that emulates the sensors of the Intel
RealSense D455 depth camera (Fig. 2b). Depending on the
application, users can enable or disable the depth, stereo,
or RGB cameras and add additional cameras to capture
more data. As the vehicle moves based on simulated poses,
onboard images are captured from the current drone pose.
Additionally, we provide image publisher scripts with a
custom camera manager (Fig. 2c), allowing users to specify
ROS topic names and adjust the publishing frequency by
modifying parameters. In the provided example, stereo
images are published in monochrome, and depth images
are generated using a depth shader that replicates the
D455 depth scale. AgriNav includes user-friendly Unity
editing tools and detailed instructions, ensuring minimal
effort is required to customize the simulator before use.

3. SUPPORTED FEATURES

The main contribution of our proposed simulator, com-
pared to existing ones, is its ability to support closed-loop



experimentation with vision-based navigation packages.
While many simulators generate visual sensor data and in-
ertial measurements, which are essential for visual-inertial
odometry algorithms, they often overlook critical aspects
such as camera calibration, algorithm initialization, and
handling rendering-induced synchronization issues, mak-
ing direct integration with existing navigation algorithms
difficult. In this section, we outline the key features in
AgriNav that enable VIO simulation, integrating with
OpenVINS as an example. Additionally, we highlight fea-
tures that make our simulator well-suited for a wide range
of agricultural applications.

3.1 Sensor calibration and configuration

Most VIO algorithms require configuration files that spec-
ify sensor parameters. These include IMU noise densi-
ties and biases, camera intrinsics, and the transforma-
tion matrices between cameras and IMUs. For instance,
OpenVINS uses the IMU profile in the high-frequency
propagation steps, while camera intrinsic and extrinsic
parameters are needed during measurement updates. Typ-
ically, these values are obtained through calibration tools
such as Kalibr (Rehder et al. 2016), but collecting required
calibration data in simulation is challenging. We address
this issue by setting ground truth values for these criti-
cal parameters and configuring calibration settings based
on sensor datasheets, making integration straightforward
while reflecting true sensor characteristics.

3.2 Support for VIO initialization

In addition to sensor configuration, many navigation al-
gorithms, particularly those relying on visual odometry,
require an initialization process. This typically involves
hand-held camera motion to initialize the algorithm, after
which the state estimates can be published properly. How-
ever, most simulators start the vehicle perfectly at rest,
which could result in failed initialization or dynamic ini-
tialization that leads to poor estimation performance. To
address this, we introduce a short initialization sequence
that lifts the vehicle slightly, allowing the system to ini-
tialize correctly. This process runs autonomously, requiring
the user to simply wait for it to complete before testing
control and planning algorithms. Examples in Section 4
begin with this initialization process.

3.3 Frame rate management using simulated time

Another significant challenge in vision-based simulation is
the computational overhead required for image generation,
which can vary depending on hardware capabilities. In
some cases, rendering delays prevent images from being
published at the desired frame rate, causing unexpected
navigation performance. However, this is not an issue with
physical cameras. To ensure consistent testing regardless
of compute limitations, we use the simulation time feature
in ROS. Our simulator node publishes to the /clock
topic and subscribes to the relevant image topics, ensuring
that the clock only advances when images are received at
the intended frame rate. Users may choose to use either
the simulated clock or the wall clock based on hardware
considerations. To demonstrate this capability, all example

Fig. 3. Unity setup for multiagent simulation. Users only
need to make replicates of the drone object and
specify different vehicle IDs in the Inspector window.

data in the following section are collected using simulated
time.

3.4 Vision-based path planning

Using the provided modular framework, visual information
and VIO outputs can be used to test other autonomy
components, such as vision-based path planners. Users can
easily publish images as ROS messages and subscribe to
them in a planner node, enabling the evaluation of plan-
ning algorithms. In Section 4, we demonstrate an example
using the Rectangular Pyramid Partitioning algorithm
presented in Bucki et al. (2020), which requires depth
images from the simulated depth camera as input. Addi-
tionally, planners that rely on perception information, such
as semantic mapping-based (Ryll et al. 2020) or feature-
based (Wu et al. 2022) motion planning algorithms, can
also be tested within our provided framework.

3.5 Multi-agent simulation

Many agricultural applications require large-scale data
collection, making multi-agent cooperative missions an
important aspect of system autonomy. Our simulator fully
supports multi-agent simulation while maintaining all the
previously mentioned features. Users can enable multiple
agents by duplicating the drone object and assigning
unique vehicle IDs to each of them, as shown in Fig. 3.
These vehicle IDs must also be provided as arguments to
the simulator node, ensuring proper functionality without
additional modifications.

4. EXAMPLE USE CASES

To showcase the key features of AgriNav, we present
several example use cases that demonstrate its capabilities
in vision-based navigation, planning, and data collection.
These examples illustrate how the simulator can be used
for evaluating VIO performance, analyzing path planning
results, and assessing additional vision-based algorithms
using onboard data.



Fig. 4. a) Example scene in which hovering test is per-
formed with VIO. b) Visualization of VIO estimated
trajectory and SLAM features used to generate state
estimates. c) Onboard feature tracking results using
stereo images with actively tracked features marked
in green.

Fig. 5. Comparison of the full vehicle state estimated by
VIO with the simulated ground truth during the hover
test. Control commands issued as desired angular
velocities are compared against both the ground-truth
and estimated vehicle states.

4.1 Closed-loop hover test with VIO

We begin with a hover test with VIO in the loop, as shown
in Fig. 4a. The vehicle is commanded to hover in front of a
checkerboard to assess state estimation performance. The
initialization sequence detailed in Section 3.2 is executed
first, followed by a controlled hover for a few seconds before
landing. Stereo images and IMU data serve as inputs to
the VIO algorithm, with the resulting odometry used for
state feedback in vehicle control. The executed trajectory
and the features contributing to odometry estimation
are plotted in Fig. 4b. Sample onboard stereo images
are shown in Fig. 4c, with actively tracked 2D features
highlighted in green. Additionally, we demonstrate the
ability to analyze VIO flight performance in closed-loop
using our proposed framework. Fig. 5 presents the full
vehicle state estimated by the VIO algorithm compared
to the simulated ground truth, as well as the control
commands generated which can be used to evaluate the
angular velocity tracking performance.

Fig. 6. a) Example scene with executed trajectories. The
true trajectory is marked in white and the estimated
trajectory is marked in blue. b) Samples of onboard
images used as inputs for planning and estimation
algorithms. c) Visualization of the trajectories and
features used for localization. The planner provides
trajectories in a receding-horizon fashion, marked in
green.

4.2 Through-the-canopy flight with VIO and depth-based
planning

We provide an additional example demonstrating how our
simulation framework can be used to test vision-based
planning algorithms alongside vision-based odometry. In
this scenario, the drone is commanded to fly through two
rows of trees. We use a vehicle controller similar to that in
the previous section, with the addition of a depth-image-
based planner outlined in Bucki et al. (2020). The planned
trajectories are generated through collision checking using
the depth image, and the optimal trajectory, shown in
green in Fig. 6c, is executed in a receding horizon fashion
until the goal is reached. To visualize system performance,
we also provide samples of the collected onboard images
with the estimated and ground-truth vehicle trajectories
in Fig. 6.

4.3 Simulated image capture for detection evaluation

Since additional cameras can be added to the drone object
and published as image topics, our simulator also supports
image data collection to evaluate detection algorithms in
postprocessing. In Fig. 7, we present an example in which
ground truth annotations for visible fruits are generated
using tree model information. Detection algorithms can



Fig. 7. Example for fruit detection. The white markers are
generated using the ground-truth fruit positions, and
the blue markers indicate the fruits detected by the
chosen algorithm.

be evaluated against these annotations in the captured
images.

5. CONCLUSION

In this work, we introduce AgriNav, a simulation frame-
work that addresses the integration gap between vision-
based navigation algorithms and existing tools. We achieve
this by implementing a simple yet modular communication
framework, offering customizable maps and object man-
agers, and ensuring that simulated sensor signals reflect
real hardware behavior while managing synchronization
constraints. Although our current examples support only
OpenVINS and the RealSense D455 camera, our aim is
to expand compatibility with a wider range of sensors
and provide instructions for additional navigation suites,
further enhancing the simulator’s flexibility for testing
autonomy algorithms across diverse agricultural applica-
tions. Another important future direction is to improve
the realism of simulated camera outputs by incorporating
effects such as motion blur and lens distortion, as these
factors can also influence vision-based navigation perfor-
mance.

REFERENCES

Aslan, M.F., Durdu, A., Sabanci, K., Ropelewska, E., and
Gültekin, S.S. (2022). A comprehensive survey of the
recent studies with uav for precision agriculture in open
fields and greenhouses. Applied Sciences, 12(3), 1047.

Bailey, B.N. (2019). Helios: A scalable 3d plant and en-
vironmental biophysical modeling framework. Frontiers
in Plant Science, 10, 1185.

Bucki, N., Lee, J., and Mueller, M.W. (2020). Rectangular
pyramid partitioning using integrated depth sensors
(rappids): A fast planner for multicopter navigation.
IEEE Robotics and Automation Letters, 5(3), 4626–
4633.

Geneva, P., Eckenhoff, K., Lee, W., Yang, Y., and Huang,
G. (2020). Openvins: A research platform for visual-
inertial estimation. In 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA), 4666–4672.
IEEE.

Gyagenda, N., Hatilima, J.V., Roth, H., and Zhmud, V.
(2022). A review of gnss-independent uav navigation
techniques. Robotics and Autonomous Systems, 152,
104069.

Jacinto, M., Pinto, J., Patrikar, J., Keller, J., Cunha, R.,
Scherer, S., and Pascoal, A. (2024). Pegasus simulator:
An isaac sim framework for multiple aerial vehicles sim-
ulation. In 2024 International Conference on Unmanned
Aircraft Systems (ICUAS), 917–922. IEEE.

Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and
Furgale, P. (2015). Keyframe-based visual–inertial
odometry using nonlinear optimization. The Interna-
tional Journal of Robotics Research, 34(3), 314–334.

Mur-Artal, R., Montiel, J.M.M., and Tardos, J.D. (2015).
Orb-slam: A versatile and accurate monocular slam
system. IEEE transactions on robotics, 31(5), 1147–
1163.

Qin, T., Li, P., and Shen, S. (2018). Vins-mono: A robust
and versatile monocular visual-inertial state estimator.
IEEE transactions on robotics, 34(4), 1004–1020.

Rehder, J., Nikolic, J., Schneider, T., Hinzmann, T., and
Siegwart, R. (2016). Extending kalibr: Calibrating the
extrinsics of multiple imus and of individual axes. In
2016 IEEE International Conference on Robotics and
Automation (ICRA), 4304–4311. IEEE.

Ryll, M., Ware, J., Carter, J., and Roy, N. (2020). Se-
mantic trajectory planning for long-distant unmanned
aerial vehicle navigation in urban environments. In
2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 1551–1558. IEEE.

Servières, M., Renaudin, V., Dupuis, A., and Antigny, N.
(2021). Visual and visual-inertial slam: State of the art,
classification, and experimental benchmarking. Journal
of Sensors, 2021(1), 2054828.

Shah, S., Dey, D., Lovett, C., and Kapoor, A. (2018).
Airsim: High-fidelity visual and physical simulation for
autonomous vehicles. In Field and Service Robotics:
Results of the 11th International Conference, 621–635.
Springer.

Song, Y., Naji, S., Kaufmann, E., Loquercio, A., and
Scaramuzza, D. (2021). Flightmare: A flexible quadrotor
simulator. In Conference on Robot Learning, 1147–1157.
PMLR.

Unity Technologies (2025a). Ros-tcp-connector.
URL https://github.com/Unity-Technologies/
ROS-TCP-Connector. Accessed: Feb. 23, 2025.

Unity Technologies (2025b). Ros-tcp-endpoint.
URL https://github.com/Unity-Technologies/
ROS-TCP-Endpoint. Accessed: Feb. 23, 2025.

Velusamy, P., Rajendran, S., Mahendran, R.K., Naseer,
S., Shafiq, M., and Choi, J.G. (2021). Unmanned aerial
vehicles (uav) in precision agriculture: Applications and
challenges. Energies, 15(1), 217.

Wu, X., Chen, S., Sreenath, K., and Mueller, M.W. (2022).
Perception-aware receding horizon trajectory planning
for multicopters with visual-inertial odometry. IEEE
Access, 10, 87911–87922.

Zha, J., Yang, T., and Mueller, M.W. (2024). Agri-fly: sim-
ulator for uncrewed aerial vehicle flight in agricultural
environments. IEEE Access.

https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Endpoint
https://github.com/Unity-Technologies/ROS-TCP-Endpoint

	Introduction
	Conclusion



