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Abstract— This paper presents a method allowing a quadro-
copter with a rigidly attached racket to hit a ball towards a
target. An algorithm is developed to generate an open loop
trajectory guiding the vehicle to a predicted impact point – the
prediction is done by integrating forward the current position
and velocity estimates from a Kalman filter. By examining
the ball and vehicle trajectories before and after impact,
the system estimates the ball’s drag coefficient, the racket’s
coefficient of restitution and an aiming bias. These estimates
are then fed back into the system’s aiming algorithm to improve
future performance. The algorithms are implemented for three
different experiments: a single quadrocopter returning balls
thrown by a human; two quadrocopters co-operatively juggling
a ball back-and-forth; and a single quadrocopter attempting to
juggle a ball on its own. Performance is demonstrated in the
Flying Machine Arena at the ETH Zurich.

I. INTRODUCTION

In this paper we describe a system that allows a quadro-

copter to hit a ping-pong ball towards a target using an

attached racket. This enables a single quadrocopter to juggle

a ball, multiple quadrocopters to hit a ball back-and-forth,

or a human and quadrocopter to play together. The term

“juggling” here is used in the same sense as in soccer, where

one tries to keep the ball in the air for as long as possible.

A useful way of visualising the problem setup is to think of

a “flying racket” (see Fig. 1) hitting a ball.

Hitting a ball is a visually engaging problem, with which

everyone is acquainted, and any casual bystander can im-

mediately judge how successful a system is. This problem

involves various aspects: deciding when and where to hit the

ball, and to what target; analysing the dynamics of the ball

flight, ball/racket impact and the dynamics of the quadro-

copter; generating a trajectory moving the quadrocopter to

a state which hits the ball as desired, while respecting the

dynamics of the quadrocopter; and estimating the state of the

ball accurately enough to allow for useful predictions.

Robotic juggling and ball sports are popular research

topics, and are seen as challenging dexterous tasks. Examples

include robotic table tennis, from simplified ping-pong [1]

to teaching a robotic arm to return a table tennis ball [2].

Other interesting cases are human/robot volleyball [3]; robot

basketball [4] and the RoboCup robotic soccer championship

[5]. An example of juggling per se can be found in [6], with

another interesting case being “blind” juggling [7].

Due to their agility, and mechanical simplicity, quadro-

copters have become a popular subject of research. A few

examples of challenging tasks executed by quadrocopters are:
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dancing [8]; balancing an inverted pendulum [9]; aggressive

manoeuvres such as flight through windows and perching

[10]; and cooperative load-carrying [11].

The problem of hitting a ball also yields opportunities

for exploring learning and adaptation: presented here are

strategies to identify the drag properties of the ball, the

racket’s coefficient of restitution, and a strategy to compen-

sate for aiming errors, allowing the system to improve its

performance over time. This provides a significant boost in

performance, but only represents an initial step at system-

wide learning. We believe that this system, and systems like

it, provide strong motivation to experiment with automatic

learning in semi-constrained, dynamic environments.

The paper is organised as follows: in Section II we

derive equations to model quadrocopter flight, ball flight

and ball/racket impact. In Section III we present algorithms

to estimate the ball state and predict the ball’s trajectory,

estimate the racket’s coefficient of restitution and estimate

an aiming bias. Then an algorithm to generate a trajectory

for the quadrocopter is given in Section IV, followed by

a discussion on the system architecture and experimental

setup in Section V. Results from experiments are presented

in Section VI. We attempt to explain why the system fails

on occasion in Section VII and conclude in Section VIII.

II. DYNAMICS

We model the quadrocopter with three inputs (refer to

Fig. 2): the angular accelerations q̇ and ṗ, taken respectively

about the vehicle’s x and y axes, and the mass-normalised

collective thrust, f . The thrust points along the racket normal,

n. The attitude of the quadrocopter is expressed using the

z-y-x Euler angles, rotating from the inertial frame to the

Fig. 1. A quadrocopter with attached badminton racket head. Three retro-
reflective markers are attached to the vehicle, with which the vehicle pose
can be determined (here, two are partially obscured by the racket). The ball,
shown lying on the racket, is also wrapped in the retro-reflective tape to be
visible to the motion capture system.
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Fig. 2. Dynamics of a quadrocopter, acting under inputs of thrust (f ), and
two angular accelerations q̇ and ṗ; and under the influence of gravity g.
The base vectors x, y and z of the inertial reference frame are also shown.

body-fixed frame by yaw (ψ) first, then pitch (θ) and finally

by roll (φ) – for simplicity, throughout this paper the yaw

is assumed to be controlled to zero by a separate controller.

Using the two remaining angles, we can express the racket

normal in the inertial frame as

nnl = (sin θ cosφ, − sinφ, cos θ cosφ) . (1)

In our analysis we assume that the pitch and roll angles

remain small, and obtain sin θ ≈ θ and cos θ ≈ 1 to first

order (likewise for φ). Furthermore, under this assumption,

we can take the Euler angle accelerations θ̈ and φ̈ as equal

to the vehicle’s angular accelerations about its x and y axes.

The equation of motion for the quadrocopter is

s̈r = nf + g (2)

θ̈ = q̇ (3)

φ̈ = ṗ (4)

where

n = (θ, −φ, 1) , g = (0, 0, −g) (5)

and sr to denotes the quadrocopter’s position in the inertial

reference frame, and ṡr and s̈r its velocity and acceleration,

respectively.

The ball’s flight is modelled as a point mass under the

influence of gravity and aerodynamic drag, and we ignore

spin. For a more detailed treatment of table tennis ball

flight and impact dynamics, see [12]. We model drag as

proportional to the ball’s speed squared, with proportionality

coefficient KD. Denoting the ball’s position in space as sb,

we can write the ball’s equation of motion as

s̈b = g −KD‖ṡb‖ṡb (6)

where ‖·‖ refers to the Euclidean norm.

The impact between the racket and the ball is modelled

as an impulse acting in the direction of the racket normal.

The “efficiency” of the impact is captured by the coefficient

of restitution, β ∈ [0, 1]. We define β as the ratio of the

components of the ball’s pre- and post-impact velocities (ṡ−b
and ṡ+b , respectively) in the direction of the racket normal,

n,

β = −
(

ṡ+b
)T

n
(

ṡ−b
)T

n
for ṡr = 0, (7)

derived for simplicity for the case of a fixed racket.

We assume that the mass of the vehicle/racket is much

larger than that of the ball (meaning that the racket velocity

remains unaffected by the impact) and that the contribution

of the racket’s angular velocity to the post-impact ball state

is negligible. This is because we intend to hit the ball at

the racket’s centre, which approximately corresponds to the

vehicle’s centre of rotation. Then the ball’s velocity after

impact with a moving racket is

ṡ+b = ṡ−b − (1 + β)
(

(

ṡ−b − ṡr
)T

n
)

n. (8)

Experiments showed that the ball’s velocity tangential to the

racket face does change during impact, but this change is

very hard to predict and is therefore neglected.

III. ESTIMATION

In this section we describe a Kalman filter to estimate

the ball’s state, and strategies for estimating the ball’s drag

coefficient, the coefficient of restitution of the racket, and an

aiming bias. The values for coefficient of restitution and drag

are estimated online, rather than measured and stored, since

individual balls show large differences in behaviour. These

estimates are used for prediction and aiming of the ball as

used in Section IV.

A. Ball state

We define the ball state as

xb = (sb, ṡb) . (9)

If we ignore drag, we can write the evolution of the ball state

during free flight as a continuous time linear system:

ẋb = Acxb +Bc, (10)

where

Ac =

[

03×3 I3×3

03×3 03×3

]

, Bc =

[

03×1

g

]

. (11)

This we can convert to a discrete time system with step

size τk, where xb[k] := xb(tk) is the state at time tk.

The process noise w[k] is modelled as acting only on the

velocity components to capture unmodelled accelerations.

The measurement noise v[k] is assumed to act equally in

all directions upon the measurement, z[k]. Then

xb[k + 1] = A[k]xb[k] +B[k] +w[k] (12)

z[k] = H[k]xb[k] + v[k], (13)

where

A[k] =

[

I3×3 τk I3×3

03×3 I3×3

]

(14)

B[k] =
[

0 0 − 1

2
gτ2k 0 0 −gτk

]T
(15)

H[k] =
[

I3×3 03×3

]

. (16)

An estimate of the ball state (x̂b[k]) can now be calculated

using a discrete time Kalman filter [13]. We modify the stan-

dard linear Kalman filter formulation by including drag in the

state prediction step. We introduce an intermediate position

5114



and velocity for integration, r(t) and ṙ(t), respectively. By

using the estimate at time tk as initial value, r and ṙ can be

evaluated by numerical integration, so that

(r (tk) , ṙ (tk)) := x̂b[k] (17)

and r(t), ṙ(t) satisfy (6).

The state prediction for the Kalman filter is then simply

r(tk + τk) and ṙ(tk + τk). For the variance propagation,

and for the measurement update of both the state and the

variances, the usual linear Kalman filter equations are used.

Taking the time derivative of the ball’s specific mechanical

energy Eb = 1

2
‖ṡb‖2 + gT sb, yields the specific power

extracted from the system by the drag force,

Ėb = −KD‖ṡb‖3. (18)

Using the ball state estimate x̂b[k] from the ball state

filter to calculate the ball’s speed v̄[k], the above can be

approximated as a measurement K̃D[k],

v̄[k] =

√

x̂b[k]T
[

03×3 03×3

03×3 I3×3

]

x̂b[k] (19)

Ē[k] =
1

2
(v̄[k])

2
+

[

gT 01×3

]

x̂b[k] (20)

K̃D[k] = −
(

Ē[k]− Ē[k − 1]
)

τk
(

1

2
(v̄[k] + v̄[k − 1])

)3
, (21)

where Ē[k] is the estimate of the ball’s mechanical energy

at time tk, and we use a two step average of the ball’s speed.

These measurements can now be used to form an estimate

of the drag value (K̂D[k]) using a recursive least squares

(RLS) estimator [14]. We define PD[k] = var
(

K̂D[k]
)

as

the estimate variance, and RD[k] as the measurement noise

variance (from a nominal variance RD,0, weighted by a

two-step average of the ball’s speed). We also introduce an

intermediary gain CD[k].

RD[k] =
RD,0

(

1

2
(v̄[k] + v̄[k − 1])

)3
(22)

CD[k] =
PD[k − 1]

PD[k − 1] +RD[k]
(23)

K̂D[k] = K̂D[k − 1] + CD[k]
(

K̃D[k]− K̂D[k − 1]
)

(24)

PD[k] =
PD[k − 1]RD[k]

PD[k − 1] +RD[k]
(25)

We disallow measurements below some minimum height

to ensure we only use measurements taken when the ball is

in flight (i.e. not being handled, or hit by the racket). To

protect against numerical issues, we disallow measurements

when the ball’s speed approaches zero.

For longer term predictions of the ball state, we numeri-

cally integrate forward the ball state using (6). This is used

to predict the time of impact and the ball state at impact, as

well as during aiming, to evaluate possible post-impact ball

velocities. For such predictions an accurate estimate of the

drag coefficient is crucial.

B. Racket coefficient of restitution

By examining the ball and vehicle state estimates before

and after an impact, we can estimate the racket’s coefficient

of restitution using (8). These estimates can be combined to

form an estimate β̂, again using an RLS estimator, similar to

(22) - (25), but with the measurement noise variance taken

as constant.

We only allow coefficient of restitution measurements

lying in the range [0.5, 1]. The lower bound allows us to

identify “failed” impacts, for example if the ball hits the

racket frame, or the propellers. The value of 0.5 was chosen

by examining experimental data.

C. Aiming bias

We notice that with the preceding, the system still shows

an aiming bias, defined as the difference between the target

position and where the ball crossed the target height. The

system attempts to identify where it should aim so that

the ball hits the target point, by using two separate RLS

estimators, one each for the x and y components of the

aiming bias. This allows us to compensate for systematic

errors, such as a misaligned racket.

IV. TRAJECTORY GENERATION

Here we derive an open-loop trajectory to move the

quadrocopter from some initial state to an impact state, in the

time remaining until impact. We define impact as when the

ball drops through some user-defined impact height. From

the ball estimator, we have an estimate of time remaining

until impact (T ), and the ball’s velocity at this time.

To calculate the required ball velocity after impact, we

note that the post-impact trajectory has to start at the impact

point, pass through some maximum height, and reach the

aiming point. These requirements define a unique ball trajec-

tory. We note that, by (6), the ball always moves in a vertical

plane, implying that we need only solve for horizontal and

vertical components of the post-impact ball velocity (vh and

vv, respectively).

We can solve for these using a two-dimensional gradient

descent search, minimising the cost function C (vh, vv),
composed of a height error and a lateral distance error. We

denote the achieved maximum height by hm(vh, vv), and the

desired maximum ball height by hm,d. Furthermore, we use

the distance l (vh, vv) at which the ball passes through the

target height, and the desired distance ld.

C (vh, vv) = (hm (vh, vv)− hm,d)
2

+ (l (vh, vv)− ld)
2

(26)

The functions hm (vh, vv) and l (vh, vv) are evaluated by ex-

amining the trajectories resulting from numerical integration

of (6).

Using the ball’s pre- and post-impact velocities, we can

solve for the required racket state at impact using (8),

yielding

ndes(T ) =
ṡ−b − ṡ+b

‖ṡ−b − ṡ+b ‖
(27)
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V⊥,des := (ṡr(T ))
Tn =

1

1 + β
(βṡ−b + ṡ+b )

Tn, (28)

where V⊥,des is the desired racket speed in the direction of

the desired racket normal (ndes) at impact. Because of how

we mount the racket (see Fig. 1), it follows that the racket

state is simply that of the quadrocopter, displaced in the body

z-axis by some offset.

There are a total of six constraints we need to meet at

impact. The desired pitch and roll angles can be derived

from the desired racket normal at impact (ndes(T )) using

(1). We also need to achieve the normal speed V⊥,des, and

the quadrocopter has to be at the impact point, at time T .

Using (2) to describe the quadrocopter dynamics under

the small angle assumption, we have three inputs: the mass-

normalised thrust f , and the angular accelerations q̇ and ṗ.

Noting that we need to solve for six equations, we assume

affine inputs of the form

f(t) = Af t+Bf (29)

q̇(t) = Aθt+Bθ (30)

ṗ(t) = Aφt+Bφ. (31)

This form is inspired by the analysis of a linear one-

dimensional system where the ball and racket are constrained

along the z axis, with the single control input being the

racket’s acceleration f . An affine input minimises the me-

chanical energy expended by the control effort. (29)-(31) are

simple enough to yield closed-form solution, while providing

the necessary degrees of freedom. By substituting these into

(2), and integrating, we can write the quadrocopter’s position

and velocity as polynomials in time. We substitute for the

six requirements at impact, and substitute the integration

constants with the initial conditions, to yield six equations

in six unknowns (the input coefficients). This system of

equations can be reduced to a single fourth order equation in

one unknown, which can be solved for in closed form (the

full derivation is made available online on the first author’s

website).

For a real polynomial of order four, we can have either no,

two, or four real solutions. In case of multiple real solutions,

we note that we wish to avoid large inputs to not violate the

small-angle assumption, and select a solution minimising:

A2
f +A2

θ +A2
φ. (32)

Because of the simple relationships between the related affine

constants, small values for Af , Aθ and Aφ imply small Bf ,

Bθ and Bφ, respectively (refer to the online derivation).

We have now solved for open-loop inputs which move

the system from some initial state to the state needed to

hit the ball, in the time until impact. This trajectory will

satisfy the quadrocopter equation of motion under the small-

angle assumption, but it does not take actuator saturation into

account. By saturation we mean that the individual motor

commands will exceed what is possible, for example when

the collective thrust exceeds the vehicle’s achievable limits,

typically at the beginning or end of the trajectory.

This open-loop trajectory is sent to a near-hover feedback

controller, similar to that described in [15]. The controller

runs on position feedback, and we use the calculated desired

velocity, acceleration and body rates as feed-forward terms,

to generate the four individual motor commands.

V. EXPERIMENTAL SETUP

The preceding were coded in C++, and implemented in

the Flying Machine Arena (FMA) at the ETH Zurich. The

algorithm is shown schematically in Fig. 3, and can be

broken into the following components:

• The ball estimator is responsible for finding the ball in

the space, estimating its state, and then predicting when

and where impact will occur.

• The trajectory generator calculates the desired quadro-

copter state at impact, and generates a set of inputs to

move the vehicle to that state at impact time.

• Impact identification allows the system to use infor-

mation from previous impacts to improve the system

performance.

• The generated trajectory, and commands, are now sent

to the feedback controller.

It is important to note here that the trajectory generator is

invoked in two places – when a new trajectory is initialised,

and as information about the impact becomes available.

At initialisation, an initial state for the trajectory is fixed,

which remains unchanged until the next impact. As the

impact prediction improves, the desired end state of the

quadrocopter is updated, and the equations are solved to

generate a trajectory from the fixed initial condition, to the

updated impact condition.

The resulting trajectory works well when moving over

small lateral distances, but larger lateral distances imply

larger angular deviations, violating our assumption of small

θ and φ. Therefore, we use two slightly different imple-

mentations of the trajectory generator, differing in how

the initial state is chosen. In the “continuous” case, we

use the quadrocopter’s state at the start of the manoeuvre,
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Post-impact learning
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Fig. 3. Algorithm layout: the inner loop is executed continuously as new
information becomes available, and the outer loop is only executed once
per impact.
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meaning that nominally the commands to the vehicle are

continuous. This mode works best when moving over small

lateral distances. The second, “discontinuous”, mode is used

when we know that we have more time until intercept, and

works better when moving over larger distances. In this case

we generate a nominal trajectory, starting some pre-defined

distance below the predicted impact point, at zero velocity.

In this mode, since the desired trajectory does not start from

the quadrocopter’s true initial state, the bulk of the initial

control effort is due to the feedback controller bringing the

vehicle onto the nominal path. The assumption is that by the

time of impact, the vehicle will be on the desired trajectory,

flying primarily on feed-forward commands.

The continuous mode is used for single quadrocopter

juggling, while the discontinuous mode is used in the cases

of multiple quadrocopter play, or quadrocopter-human play.

The FMA is a platform for design and validation of

autonomous aerial systems and consists of a large (10m ×
10m× 10m) motion capture volume and a fleet of quadro-

copters. The vehicles are sent commands for the three

body rates and the collective thrust at 67Hz. An on-board

controller uses rate gyro measurements to generate motor

thrust commands at 800Hz. The vehicles are capable of

following angular rate commands of up to 1900 ◦/s. More

details about the Flying Machine Arena can be found in [8],

[9] and [16].

Each vehicle is equipped with three retro-reflective motion

capture markers; this allows the motion capture system to

calculate the 6DOF vehicle pose for each frame, provided at

200Hz. Any markers not associated with vehicles are treated

as point objects – the ping-pong ball is tracked as one such

object. The FMA is equipped with 8 cameras; only 3 are

required to see a marker to compute its position, providing a

high degree of tracking redundancy even when markers are

partially occluded, e.g. by a racket.

We use standard 40mm diameter table tennis balls,

wrapped in retro-reflective tape to be visible to the motion

capture system. The ball is hit using a badminton racket

head rigidly mounted on the vehicles – as shown in Fig.

1, the racket is mounted by placing the centre above the

quadrocopter centre of mass, and aligning the racket normal

with the quadrocopter z-axis. This minimises the effects of

the angular velocity of the quadrocopter, and is mechanically

convenient.

VI. EXPERIMENTAL RESULTS

Here we present results from three experiments. In each

case the quadrocopter is attempting to hit the ball at a given

intercept height, and maintain a specified maximum ball

height. This maximum height was chosen by experiment as

2m above the impact point.

1) Returning a throw: a single quadrocopter attempts

return a thrown ball. This was used to demonstrate the

effects of parameter identification.

2) Cooperative juggling: two quadrocopters attempt to

hit a ball to one another – each quadrocopter has as

target the other’s starting position.
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Fig. 4. Drag estimator outputs while a vehicle returns throws, showing
a histogram of the individual drag measurements, and the evolution of the
drag estimate. The measurements have as mean 0.078m−1, and standard
deviation 0.14m−1. The red circles on the estimate evolution plot indicate
when the ball was hit by the vehicle.

3) Solo juggling: a quadrocopter attempts to juggle a ball

on its own, and keep the impact location fixed.

A video demonstrating these experiments is available online

on the first author’s website.

A. Returning a throw

1) Drag estimation: Fig. 4 shows that the drag estimate

quickly converges to a value of approximately 0.079m−1,

and that the estimate is unaffected by the user handling the

ball, quadrocopter impacts and impact with the ground.

As validation, we can estimate the aerodynamic drag using

the usual FD = 1

2
ρ‖ṡb‖2CDAball = mballKD‖ṡb‖2, from

which we have

KD =
ρAballCD

2mball

. (33)

Taking ρ = 1.2 kg/m3, and CD = 0.4 [17], Aball = πr2 =
1.257×10−3 m2 and a mass of mball = 5×10−3 kg, we get

KDcalc
= 0.06m−1. This is in close agreement the estimate

shown in Fig. 4.

2) Racket estimation: The racket estimator generates esti-

mates of the racket’s coefficient of restitution β̂. Fig. 5 shows

the coefficient of restitution estimate settling at a value of

β̂ ≈ 0.76. Interesting to note is how the measurements vary

with position on the racket, showing a sweet spot near the

centre of the racket.

The distribution of the impact points on the racket face are

an indication of the system’s ability to predict the impact
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Fig. 5. Racket estimator output while a vehicle returns throws, showing
coefficient of restitution measurements and the distribution of impacts on
the racket face; and how the estimate evolved in time.
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Fig. 6. Influence of parameter identification, for a single vehicle returning
throws. On the left are the results when all identification is disabled, while
the right shows the performance when starting with the same values and
attempting to identify the parameters for drag, coefficient of restitution and
aiming. The ball is thrown from the target position, and the quadrocopter
attempts to return it – the quadrocopter starts at x = −3m, y = 0m.

point and time, and steer the vehicle to this impact point

at the impact time. The reference frame used here is such

that the racket face x and y align with the inertial x and y,

respectively, at zero pitch and roll angles.

3) Aiming: The aiming algorithm compares the point at

which the ball actually lands to the point the quadrocopter

wanted to hit, and attempts to shift the aiming point such

that the ball lands on the target after the next impact.

The results of the aiming estimator are shown in Fig. 6,

where we compare the system performance with and without

parameter identification. I.e. on the right the system identifies

the ball’s drag characteristics, the racket’s coefficient of

restitution, and the aiming bias. The aiming bias is estimated

at 760mm in x and 270mm in y.

The mean error is reduced from 1.4m without identifica-

tion (for 58 hits), to a mean (over 15 hits) of 47mm after

the estimates have settled. We also notice that the standard

deviation reduces slightly with identification – this is likely

due to the way the experiment is conducted: if the ball is

returned well, the throws will all start from similar locations.

However, if the returns are poor and the user has to move

to pick up the ball, we can expect a greater variation in the

throws, and the resulting returns will show a higher standard

deviation.

B. Cooperative juggling

The system can also be run with two quadrocopters

playing with one another, set up such that each quadrocopter

starts at its opponent’s target. In all other respects the

scenario is the same as when a human is throwing the ball

for a quadrocopter to return.

In Fig. 7 a rally between two quadrocopters is shown,

where the ball is kept in the air for 17 consecutive hits. This

was after sufficient time had passed for the estimates to settle.

The figure shows that the quadrocopters manage to sustain

the desired maximum ball height, and keep the impact point

approximately at the desired x± 1.5m, y = 0.

The rally was part of a “game” between the two vehicles

which lasted for 8 minutes with 160 successful hits over
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Fig. 7. Position history for two quadrocopters hitting a ball back-and-forth
over a 3m separation. The blue line is the ball’s trajectory, while red and
green are for the vehicles. The bold sections are where the quadrocopter
is following an interception trajectory, rather than simply returning to a
waiting point. The dashed line in z is the user-defined desired maximum
ball height.

24 rallies. The distribution of the rally lengths is shown in

Fig. 9. On the histogram, it is interesting to note that the

system appears to have a bi-modal distribution, where the

ball is either dropped after few hits, or the system manages

to sustain the rally for a longer time.

The longest rally ever achieved on the system lasted almost

140 hits, but was not recorded.

C. Solo juggling

During single quadrocopter juggling, the vehicle has the

least amount of time between consecutive impacts. Fur-

thermore, at the start of each trajectory (directly after the

previous impact), the quadrocopter typically has a large

positive vertical speed, and possibly large angles, lateral

velocity and angular rates. This makes solo juggling the

most challenging task – refer to Section VII for more detail.

One juggling rally of seven consecutive hits is shown in

−4

−3

−2

−1

x
 [

m
]

−1

0

1

y
 [

m
]

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

z
 [

m
]

Time [s]

Ball

Achieved Desired

Ball dropped

Fig. 8. A single quadrocopter juggling a ball 7 times. The blue line is
the ball trajectory, while the solid red line is the vehicle’s actual position,
and the broken red line the desired position. The dashed line in z is the
desired maximum ball height. Note how the system struggles to maintain
this height, see Fig. 10 and Section VII for details.
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Fig. 9. Histograms showing the system performance when two vehicles
hit a ball back-and-forth (left) and when a single vehicle juggles on its own
(right). Interesting to note is the bi-modal nature of the distribution when
two vehicles play together – where the ball is either dropped early on, or
the system manages to sustain a longer rally.

Fig. 8, with a detail of the vehicle’s z trajectory in Fig.

10, also showing the motor commands. On Fig. 8 we notice

that the system cannot maintain the desired impact point at

x = y = 0.

In Fig. 9 a histogram of a single vehicle’s juggling

performance is shown. The data shows 27 juggling “rallies”,

lasting an average of 3 hits.

The longest juggling rally ever achieved by the system

lasted 14 hits, but was again not recorded.

VII. FAILURE ANALYSIS

We identify three main causes for the system failing to

hit the ball: input (motor) saturation, unpredictable bouncing

and tracking errors.

A. Input saturation

The trajectory generator does not take input saturation into

account, and the generated trajectory might be infeasible. For

example, the commanded initial downwards acceleration is

often in excess of g, which is unachievable on this system,

since each propeller can only produce positive thrust and

some thrust is needed to maintain vehicle attitude.

In Fig. 10 we can see the effect of motor saturation.

Taking the thrust produced by a propeller as proportional

1.2

1.4

1.6

z
 [

m
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

500

1000

1500

Time [s]

M
o
to

r 
s
p
e

e
d

c
o
m

m
a

n
d

s

Motor

saturation

Achieved

Desired

Ball

1.8

Fig. 10. Motor saturation during solo juggling. On top is shown the system
performance when following a commanded trajectory (shown for height
only), and below the corresponding motor speed commands, each motor a
different colour. The commands are internal, but are linearly related to motor
speed. Clearly visible is that after generating the new trajectory, the motor
commands are too large, leading to insufficient downwards acceleration. For
an affine acceleration, we expect monotonously increasing motor commands.

to its rotational speed squared, we expect a speed command

which looks like a parabola turned on its side. During the

latter stages of the trajectory, we can see this shape, but

it is initially saturated. Some motor commands are at the

minimum, and the remainder show much larger commands

than expected. These commands can be understood as the

feedback controller regulating the vehicle’s attitude. Since

the vehicle’s motors can only produce upwards thrust, this

has the undesired consequence of producing a net upward

force and reducing the vehicle’s potential for downwards

acceleration.

B. Unpredictable impacts

Similar to how we measure the racket’s coefficient of

restitution in Section III, we can measure the orientation

of the racket’s normal for each impact. We notice that this

normal deviates from the expected vehicle z-axis – this

deviation will cause the ball’s bounce to be in a slightly

different direction from the expected, in turn leading to

aiming errors. A histogram of such deviation measurements

is shown in Fig. 11, showing measurements made during the

solo juggling experiment of Section VI.

To quantify the effects of such a deflection, we analyse

a single quadrocopter during solo juggling, maintaining a

maximum ball height hmax above the impact point. For

simplicity, we assume zero drag. From the conservation of

mechanical energy, such a ball will return to the impact

height at ṡ−b =
(

0, 0, −
√
2ghmax

)

. To return the ball to

hmax, we want ṡ+b = −ṡ−b , and noting that the nominal

racket normal is n = (0, 0, 1), we can calculate the required

racket speed using (8) as:

ṡr =
β − 1

β + 1
ṡ−b . (34)

If the true racket normal (ndefl) now deviates from the

expected by an angle γ (for convenience taken as a rotation

about the y axis), we can calculate the actual post-impact

ball velocity (ṡ+b,defl), again using (8):

ndefl = (sin γ, 0, cos γ) (35)

ṡ+b,defl =
√

2ghmax ·
(

sin 2γ, 0, 2 cos2 γ − 1
)

(36)
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Fig. 11. A histogram showing the angle between the measured normal,
and that expected, for a quadrocopter juggling a ball on its own. On the
right is a detail showing the uneven surface of the racket, and the shape of
the ball. The deflection was measured, and the shown horizontal deflection
derived therefrom – refer to the text for details.
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We can now calculate the horizontal distance the ball

moves before returning to the impact height (∆x), yielding:

∆x = 4hmax sin 2γ
(

2 cos2 γ − 1
)

(37)

This equation was used to generate the lower abscissa label

in Fig. 11, for a vehicle juggling a ball to a maximum height

hmax = 2m. We can see a 5◦ deviation leads to a horizontal

error of 1.4m, which would likely be too large for the vehicle

to successfully intercept again.

C. Tracking errors

Due to measurement errors and external disturbances, we

expect that the vehicle will not achieve a commanded state

perfectly. Generally, this is difficult to quantify, but in Fig.

12 the position errors are shown for a vehicle hovering. Here

we can see that the vehicle’s position error has a mean of

28mm – from experience we know that we need to hit a

ball within about 50mm of the racket centre.

The tracking errors during aggressive flight are much more

difficult to analyse, but can be expected to be at least as large

as the errors during hover.

VIII. CONCLUSION

In this paper we have presented a system for a quadro-

copter to hit a ball towards a target. This was done by

analysing simple models of the ball flight, racket/ball inter-

action and quadrocopter flight. A Kalman filter was imple-

mented to estimate the ball state, which is needed to predict

the impact conditions. Using the impact conditions, the

desired quadrocopter state at impact can be calculated, which

we combine with affine inputs to move the quadrocopter from

an arbitrary initial state to the desired state at impact, under

the assumption that the angles remain small.

Strategies were implemented which allow the system to

estimate the ball’s drag coefficient and the racket’s coefficient

of restitution, and learn an aiming bias. The combination has

been shown to improve the system’s performance hitting a

ball at a target.

The algorithm was implemented for three different exper-

iments: a single vehicle returning a ball thrown by a human,

two vehicles hitting a ball back-and-forth, and a single vehi-

cle attempting to juggle on its own. The performance of the

system in each case has been shown, with the first being used
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Fig. 12. Total position errors while commanding the vehicle to hover at
a fixed location. The blue line shows the distance that the quadrocopter
is from the commanded point and the red shows the mean error over this
time. The racket has a usable radius of approximately 50mm, shown by
the green line.

to demonstrate the effects of the parameter identification.

The juggling performance for two vehicles cooperating was

shown to be much better than that of one vehicle on its own,

mostly because the vehicles have more time to respond, and

start each trajectory in a more favourable position.

The system offers various possibilities for improvement.

One can imagine the hitting action encoded as a motion

primitive, described by a simple set of parameters which the

system can learn to improve so that the resulting motion is

closer to the desired (similar to the flips of [16]). Further-

more, a game can be created, like the robot ping-pong of

[1], where different strategies (or even completely different

vehicles) can be compared in a competitive environment.
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