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Abstract— We present a method to improve the localization
accuracy of robots operating in a range-based localization
network. The method is favorable especially when the robots
operate in harsh environments where the access to a robust
and reliable localization system is limited. A state estimator is
used for a six degree of freedom object using inertial sensors as
well as an Ultra-wideband (UWB) range measurement sensor.
The estimator is incorporated into an adaptive algorithm,
improving the localization quality of an agent by using a
mobile UWB ranging sensor, where the mobile anchor moves
to improve localization quality. The algorithm reconstructs
localization network in real-time to minimize the determinant
of the covariance matrix in the sense of least square error.
Finally, the proposed algorithm is experimentally validated in
a network consisting of one mobile and four fixed anchors.

I. INTRODUCTION

An accurate, robust, and accessible localization system
is crucial for robot operation in the case of, for example,
emergency services, building fault detection in disaster areas,
or rescue missions. We assume that in these situations the
pre-installed infrastructure is destroyed or limited (i.e. no
access to GPS signal), and therefore a local and stand-
alone alternative localization system is vital. Also, the harsh
environment of these situation requires to use reliable sen-
sory devices. For example, the sensors should function in
smoke, dust, and in foggy or heavy rain conditions where
optical systems cannot be used reliably. An infrastructure
(e.g. radio/audio beacons) for the local positioning system
is important to be placed in the environment such that it
maximizes the localization accuracy, but it is most likely
impossible due to limited accessibility of such environment.
The proposed method in this paper will address above issues
by using a reliable range measurement sensor with mobile
infrastructure setting.

The recently popular ultra-wideband radio ranging is a
flexible, relatively low-cost, and reliable localization technol-
ogy mostly for but not limited to indoor environments – see
e.g. [1]–[5]. The infrastructure components (i.e radio-beacon)
of the system are easy to setup in the environment. The
radio-beacon (here called ‘anchor’) communicates via radio
messages with an agent which is equipped with UWB sensor.
The result is a range measurement, the distance between the
agent and each individual anchors.

The UWB sensors are used in a wide range of lo-
calization methods. For example, in conjunction with the
SLAM (simultaneous localization and mapping) problem,
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a particular UWB transmitter-receiver configuration on an
agent is used in [6]. The authors explain that it is crucial
to use UWB ranging specially in emergency situation, when
other technologies like camera- or laser-based sensors fail
to operate in such harsh environment. The UWB technology
also has medical applications. For example, authors in [7]
developed an algorithm to improve the localization accuracy
of surgical devices using UWB sensor in highly reflective and
dense indoor environments such as operating rooms where
multipath and no-line-of-sight conditions are an issue. In [8],
authors developed a Kalman filter estimator using fusion
of inertial measurement unit with UWB ranging sensor
for localization in crowded and dynamic environments like
imaging rooms, where technical devices like C-arm imaging
systems or operating tables are moving.

The range measurement based localization is also used
in multi-agent cooperative positioning and wireless sensor
network [9]–[13]. The main idea is to localize several agents
(or wireless sensor nodes) with the capability of exchanging
their information (i.e. relative distance, position, orientation,
etc). Our proposed method considers using several fixed
UWB anchors as well as mobile anchors, the ones that adapt
their positions in order to improve the position accuracy of
the agent. In other words, the cooperation occurs between
an agent and a set of mobile anchors. Since the localization
accuracy is sensitive to the anchor arrangement, it is hard
to achieve reasonable accuracy with restricted anchor’s ar-
rangement without careful planning, which may be difficult
in harsh conditions. In this paper, the position of mobile
anchors is assumed to be known (i.e. they have access to
a separate, independent localization technology), whereas
the agents rely only on the mobile and fixed anchors for
localization, since they don’t have access to any localization
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Fig. 1. A schematic of the proposed systems: an agent (here a quadcopter)
operates in a space prepared with combination of one mobile radio anchor
(indexed as M1) and four fixed radio anchors (indexed A1-A4). At the left,
the ellipse representing the position uncertainty is extended in the direction
which there is no anchors present. At the right, the mobile anchor moves
to the area with no anchors and reduces the uncertainty around the agent.



infrastructure. Future work will look at generalizing this by
removing the separate localization technology which mobile
anchors currently rely on. A schematic of our proposed
system is shown in Fig. 1

In this paper, we use a state estimator with no assumption
on force-torque, and we develop an adaptive localization
algorithm on top of the estimator for moving a known
ranging measurement point (i.e. a mobile anchor), so that
an agent may minimizes its position uncertainty. The state
estimation consists of a general six degrees of freedom
(6DOF) model with measurement model as agent’s distance
to known positions in the world. The adaptive algorithm
maximizes the agent’s localization quality in the least-square
sense. The results are validated in a series of experiments,
where the estimator is implemented on a quadcopter system.

II. SYSTEM MODEL

We consider model of a generic 6 degree of freedom (3 in
translation and 3 in rotation) rigid body for the purpose of
estimating the states of an agent. The agent is equipped with
inertial measurement unit (accelerometer and rate gyroscope)
and a range measurement sensor that allows to measure
the distance to any of fixed or mobile sets of anchors
(with known location) in its environment. In the following
subsections we will briefly describe the underlying models
of the estimator.

A. Equations of motion

We will use the convention of using bold-face symbols for
vector/matrix quantities, and regular font for scalars. In the
model, the position of the rigid body (agent) is denoted as
x, its velocity as v, and acceleration as a, all expressed in
the inertial frame fixed to the ground. The rotation matrix
and the angular velocity are given respectively by R and ω,
where the rotation matrix represents the orientation of the
agent. The multiplication by the roation matrix will result
a coordination transformation from the body-fixed frame to
the inertial frame. The time derivatives of these quantities
are given as

d

dt
x = v (1)

d

dt
v = a (2)

d

dt
R = RS(ω) (3)

note that S(ω) is the skew-symmetric matrix version of
cross product, where S(x)y = x× y.

B. Inertial measurements

The inertial measurement unit outputs the accelerometer
and rate gyroscope measurements, α and γ. The accelerom-
eter measures the ‘proper acceleration’ in the body-fixed
frame which we assume it is corrupted by additive noise
να.

αm = R−1 (a− g) + να (4)

The gravitational acceleration is in the inertial frame fixed to
the ground, and has magnitude g = (0, 0,−9.81)m/s2. The
rate gyroscope measures angular velocity of the agent in the
body-fixed frame. The measurement is modeled as

γ = ω + νγ (5)

here the the measurement is corrupted by νγ . Both να and
νγ are assumed to be zero mean, based on the fact that the
sensors are well calibrated and scale/bias-free.

C. UWB Range measurement system

The UWB radio mounted on the agent communicates with
other radios in the environment. At each time instant, the
agent measures the distance from its position at x to one
of fixed or mobile position at pi (anchor’s position) in the
world. This measurement ρi to anchor i is modelled as the
Euclidean norm corrupted with additive scalar noise νρ with
zero mean.

ρi = ‖x− pi‖+ νρ (6)

The UWB radio uses two-way ranging time-of-flight based
algorithm to calculate the distance (see [14] for two-way
ranging scheme). The agent can communicate only with
one anchor at a time, meaning that only a single range
measurement can be taken at any instant in time.

III. STATE ESTIMATOR

For the state estimation, an extended Kalman filter (EKF)
[15] presented in this section estimates the 12-element state
of the agent consist of position, attitude and their derivatives.
The kinematic model makes the Kalman filter an estimator
for a generic 6DOF rigid body with no assumption on forces
or torques acting on the agent. The EKF uses the technique
of [16] to encode an attitude in the state with correct-to-first-
order statistics.

The estimator does not include the angular velocity as a
state, instead uses the output of rate gyroscope measurement;
assuming that the modern sensors output high-quality mea-
surements which is a standard approach in attitude estimation
for satellites [17]. Thus, the estimator’s stochastic state ξ is
a 9 dimensional vector:

ξ̂ =
(
x̂, v̂, δ̂

)
(7)

with the hat denoting estimated quantities, and where δ̂
represents attitude error measure, assumed to be small. The
estimator uses a redundant attitude representation, with a
‘reference attitude’ Rref and the attitude error δ̂ combined
yielding the estimator’s attitude estimate R̂

R̂ = Rref

(
I + S(δ̂)

)
(8)

with I the identity matrix. This representation allows for
a singularity-free attitude estimation using only a three-
dimensional representation of the attitude error – a complete
discussion of this approach is given in [16].



The EKF uses the output of accelerometer and rate gyro-
scope for the prediction step, so the state differential is given
by

d

dt
v = Rαm + g +Rνα (9)

d

dt
δ = γ − νγ (10)

In the measurement update step, the estimator uses the
output of the UWB ranging radios. The linearization of
measurement equation (6) is as follows

Hi :=
∂ρi
∂ξ

=

(
∂ρi
∂x

,
∂ρi
∂v

,
∂ρi
∂δ

)
(11)

∂ρi
∂x

=
x− pi

‖x− pi‖
=: ei (12)

∂ρi
∂v

=
∂ρi
∂δ

= 0 (13)

Note that the measurement sensitivity with respect to the
agent’s position ei is the unit vector in the direction of anchor
i from the agent.

The estimate covariance matrix Σ computed by EKF relies
on the partial derivatives of linearization process and using
the approach of [16]. This is the partitioned matrix as below

Σ =

Σxx Σxv Σxδ

ΣT
xv Σvv Σvδ

ΣT
xδ ΣT

vδ Σδδ

 ∈ R9×9 (14)

with e.g. Σxδ the 3 × 3 cross-covariance between the
position and attitude states. The very intuitive property of
measurement sensitivity will be used in the following section
to determine how the anchors can move in order to maximize
the localization quality of the agent.

IV. MOBILE ANCHOR ALGORITHM

The measurement model as described in (12) is sensitive
to the location of the anchors pi. This means, it is possible
to affect the variance of the state estimates by moving the
anchors. This allows to create an optimization problem in
order to move the anchors in the direction which minimizes
the estimation error of the agent’s position. The covariance
matrix is used as the metric for estimation quality. In the
following subsections we will discuss this approach in detail.

A. Least squares approach

The least-square approach is used as an easy-to-analyze
approximation of the EKF used to estimate the agent’s
location. This is motivated by the least squares interpretation
of the Kalman filter.

All the derivations in this section are assumed to be for a
single mobile anchor with N−1 fixed anchors. It is simple to
generalize the derivation for multiple mobile anchors, since
the desired moving direction of each anchor decouples. All
the quantities without number subscription are introduced for
the single mobile anchor.

Notable is that we have two sets of decision variables
in this section. The position estimate of the agent x is the
decision variable for the least squares problem. The mobile

anchor’s position p is the decision variable for minimizing
the variance of the agent’s position estimate. We are using
these two variables throughout this section.

We consider again the ranging measurement model in (6).
Note, here we look at a batched version of this equation (i.e.
the equation is concatenation of scalar measurements at each
discrete time step for N anchors, fixed or mobile anchors),
which is an approximation of EKF

ρ = h(x,p) + νρ (15)
ρ
ρ1
...

ρN−1

 =


‖x− p‖
‖x− p1‖

...
‖x− pN−1‖

+


νρ
νρ1

...
νρN−1

 ,

where ρ is the measurement vector, νρ is the additive noise
vector with zero mean, and h(x, p) is the nonlinear measure-
ment model (vector-valued equation) mapping the position of
an agent in R3 to the batch of anchors’ measurements in RN .
The partial derivative of the nonlinear model with respect to
the agent’s position will result a N × 3 Jacobian matrix

A(x̂, p) =
∂h(x, p)

∂x
=


eT

eT1
...

eTN−1

 ∈ RN×3 (16)

where ith row of the matrix is the unit vector pointing from
the agent to anchor i. Assuming noise in (15) to be zero
mean with isotropic covariance Var(νρ) = qI , the position
estimate can be found by minimizing the 2−norm squared
of noise

x̂ = arg min
x

‖νρ‖2

As stated before, for the nonlinear measurement model this
will be done iteratively by linearizing the model at each time
step, and moving in the direction of the gradient descent.

B. Statistical properties

Since we use the linearized version of the equation,
the mean of the estimated position is zero (i.e. unbiased
estimator) but the variance is

Var(x̂) ≈ ((ATA)−1AT )qI((ATA)−1AT )T

= q(ATA)−1 (17)

For brevity, we use A instead of A(x̂, p) from now on.
Our goal is to minimize the effect of noise on the state
estimates (i.e. to minimize the variance of the state estimates
by varying the anchor location). Specifically, we choose to
minimize the largest eigenvalue of the covariance matrix,
which is equivalent to maximizing the smallest eigenvalue
of its inverse:

max
p

min
i

λi((A
TA)) (18)



By expanding matrix ATA, the max-min problem can be
converted to a simple form. Substituting (16) in matrix A,
the result is the sum of N rank-one matrices

ATA =
[
e e1 . . . eN−1

]


eT

eT1
...

eTN−1

 (19)

= eeT +

N−1∑
i=1

eie
T
i

Since all ei and e are unit vectors (the direction to the
anchors), the trace of ATA is always constant and equal
to the number of anchors:

tr(ATA) = tr(eTe) +

N−1∑
i=1

tr(eTi ei) = N (20)

The trace of a matrix is also equal to the sum of its eigen-
values; that means the sum of eigenvalues of the covariance
matrix in this problem is constant.

tr(ATA) =

3∑
i=1

λi = N (21)

Using this fact, the max-min optimization problem can be
transformed to

max
λ,t

t

subject to 1Tλ = N

t ≤ λi ∀i
0 ≤ λi ∀i

(22)

where t is a slack variable, and λ is a vector representing
the eigenvalues of matrix ATA. This problem can be solved
by introducing its dual problem. Since (21) shows that the
sum of eigenvalues is constant, we can conclude that (22) is
equivalent to the following problem

max
p

det(ATA) = max
i

3∏
i=1

λi (23)

It can be shown that for both problems the maximum
occurs, when all the eigenvalues are equal. Specifically, (18)
has interpretation for robust design (it minimizes the worst
variance direction) as opposed to (23) which minimizes the
volume of ellipsoid associated with the covariance matrix
[18]. This shows that this method satisfies both design
approaches (i.e. minimizing the largest variance direction
will result in minimizing the ellipsoid volume).

C. Mobile anchor
Since the matrix consists of the mobile anchor’s position,

its determinant depends on the position of the mobile anchor
at each time step.

ATA =
(x̂− p)(x̂− p)T

‖x̂− p‖

+

N−1∑
i=1

(x̂− pi)(x̂− pi)
T

‖x̂− pi‖
∈ R3×3

By taking partial derivative with respect to the mobile
anchor’s position p = (x, y, z) we can find a direction
that the mobile anchor can move in order to minimize the
determinant of the covariance matrix

∂det(ATA)

∂p
=

 d
dxdet(A

TA)
d
dydet(A

TA)
d
dzdet(A

TA)

 (24)

The explicit form of this equation is omitted, as it provides
little insight and may be reproduced using e.g. a computer
algebra package if needed. We rewrite the inverse of the
covariance matrix in a compact form as

ATA =

m1 m2 m3

m2 m4 m5

m3 m5 m6

 (25)

where mi are functions of mobile anchor’s position. As an
example, m1 and m6 have the form (note that x̂1, x̂2, x̂3 are
the three first states of the estimator representing the agent’s
position):

m2 =
(x̂1 − x)(x̂2 − y)

‖x̂− p‖2
, m6 =

(x̂3 − z)2

‖x̂− p‖2

Representing the inverse of the covariance matrix in the
compact form of (25) allows to derive the determinant of
the matrix and its partial derivative in terms of functions
mi, and then substitute back the mobile anchor’s position.
Finally, (24) will be a set of three closed form equations in
terms of the mobile anchor’s position as well as the agent’s
position, which can be easily implemented.

We choose the control action as the velocity command for
the mobile anchor which is the Jacobian of the determinant
of the covariance matrix multiplying by a gain value s > 0
as follows

vcmd = s
∂det(ATA)

∂p

This is exactly the same as moving on the direction of
gradient ascent iteratively until the mobile anchor reaches
to the top (max point of determinant) and stays there. For
sequence of steps the mobile anchors move as follows

p(k + 1) = p(k) + (∆t)vcmd (26)

where k is time steps and ∆t is the discrete time interval.
In the following section we will present the real-time exper-
imental results of this approach.

V. EXPERIMENTAL VALIDATION

The approach is validated in experiment, where two
quadcopters are used, one as autonomous agent and one as
mobile anchor. A first set of experiments just uses the fixed
anchors as the only UWB measurement setting. The second
experiment uses one mobile anchor in addition to the fixed
anchors. Results will be presented by comparing the agent’s
variance computed by the onboard EKF for the two different
experiment settings.
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Fig. 2. Closed loop control of quadcopter using UWB ranging sensor with and without use of mobile anchor. The experiment illustrates the square
roots of the diagonals of EKF covariance matrix (i.e. one standard deviation). As seen using mobile anchor, decreases uncertainty (position and velocity)
dramatically in the x direction, since there are enough fixed anchors along y direction but nothing in the x direction (see Fig. 3). Note that the estimator
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Fig. 3. Top view. Red dots represent the position of fixed anchors in both
sets of experiments. The black dot is the fifth fixed anchor in the first and
the initial position of mobile anchor in the second set of experiments. The
set of four anchors are all located at z = 0. The blue path is the projection
of the mobile anchor trajectory on xy plane.

A. Experimental Setup

The testbed we used to examine our algorithm is a
Crazyflie 2.0 quadcopter (shown in Fig. 4), with approximate
mass of 30g, and motor-to-motor distance of 105mm. We
used two quadcopters as the agent and the mobile anchor
in our experiments. The quadcopter is equipped with an
STM32F4 microcontroller, an Invensense MPU9250 inertial
measurement unit, and a Decawave DW1000 radio module

for the ultra-wideband ranging measurements. Beside the
mobile anchor which shared the same hardware, all the
fixed anchors also have the same computational and sensing
hardware. The state estimation (EKF) for the agent was
performed on the microcontroller, but the mobile anchor
used motion capture system for its own localization, and
was commanded by the trajectory according to (26) com-
puted off-board on a computer. Measurements from the
accelerometer and rate gyroscope were taken at 500Hz, and
range measurements were taken at approximately 80Hz. The
effectiveness of our approach on the estimator performance
is quantified by using the motion capture system, whose
measurements are taken as ground truth.

The top view of the anchor arrangement can be seen in
Fig. 3. Notable is that the anchors are placed such that their
measurements carry sufficient information in the y direction,
but not very much in the x direction. This was chosen so as to
highlight the importance of mobile anchor and our proposed
algorithm.

The gain value was set to s = 0.1m−1s−1, which provided
a good speed of convergence. However, the appropriate
selection of this gain value is a matter for future work,
as an overly aggressive gain may lead to chattering in
the solutions, or potential destabilization due to neglected
dynamics, especially if the state estimate of the mobile
anchor is less precise.



Fig. 4. The quadcopter used in our experiments as the agent and mobile
anchor.

B. Experiment with mobile anchor

Two sets of similar experiments were conducted to verify
the advantage of using mobile anchor against only fixed
anchors to improve the localization accuracy. In the first set
of experiments, we used five fixed anchors placed on the
ground as pictured in Fig. 3. We ran this test several times
while the quadcopter hovers at the same position at origin
and the EKF described in Section III runs on the quadcopter’s
microcontroller. In the second set of experiments, we used
four fixed anchors in addition to one mobile anchor. The
mobile anchor starts from its initial position (black dot in
Fig. 3) and moves according to the algorithm described in
Section IV. The solution shown in Fig. 3 shows the vehicle
moving to a local minimum, though it is not a unique
minimizer – for example, a similar reduction of uncertainty
would have been achieved had the vehicle moved initially
along the negative X axis, though this would have led to an
initial increase in uncertainty. Furthermore, due to the range
sensor model, all solutions on the line connecting the agent to
a specific local minimum will have equivalent performance.

Table I compares the average root mean square error
(RMSE) on state estimates of the quadcopter (position, veloc-
ity, attitude) from several trials for both sets of experiments.
As seen the average RMSE is improved by about 14%, 9%,
and 3% for position, velocity and attitude respectively. The
results show larger improvement on position rather than other
states. This represent the fact that the proposed algorithm
have direct impact on the position estimate quality but not on
velocity and attitude. Fig. 5 shows the determinant of inverse
covariance matrix in the proposed algorithm det(ATA)−1.
This verifies that the mobile anchor has moved to decrease
the position uncertainty around the agent.

Fig. 2 shows the experimental data of a trial of both exper-
iments, which is the comparison of one standard deviation
of state estimates. Comparing the monotonic decrease in the
uncertainty of position in x direction (blue line) with no
improvement in y shows that our intuition about anchor’s
arrangement was correct; absence of any anchor along the
axis of symmetry between the fixed anchors causes insuf-
ficient available information along that axis, but when the
mobile anchor starts to move towards the axis the uncertainty
also decreases accordingly.

TABLE I
COMPARISON OF ESTIMATION ERROR FROM EXPERIMENTS

RMSE
Average difference (%)4 fixed, 1 mobile 5 fixed anchors

position [m] 0.156 0.182 -14.3%
velocity [m/s] 0.374 0.409 -8.6%
attitude [deg.] 5.140 5.315 -3.3%
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Fig. 5. Determinant of the inverse of the covariance matrix. The plot shows
the increase of the determinant as expected when the mobile anchor moving
in the direction of gradient ascent; that means the state estimate variance is
decreasing.

As the agent navigates in the environment to reach the
target position, the localization network (anchors) is capa-
ble to reconstruct itself in real time accordingly. Although
the proposed algorithm for the mobile anchor was derived
assuming that the agent’s position is fixed (i.e. no dynamic
model was introduced), the algorithm works reliably even
for the moving agent. As an example, Fig. 6 shows an
experiment when the quadcopter tracks a trajectory, and the
mobile anchor adapts its position based on the proposed ap-
proach reducing the uncertainty of the quadcopter’s position
estimate.
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Fig. 6. Closed loop control of the quadcopter using one mobile anchor. The
plot shows that the quadcopter is tracking a horizontal trajectory (dashed
blue) along the y axis. Despite the fact that the method was developed for a
fixed agent, the results show that it can be used for moving agents as well.



VI. CONCLUSION

The paper presented a EKF estimator for estimating a
6DOF states of an object using accelerometer, rate gyro-
scope, and UWB ranging sensor. Specifically, the paper was
focused on developing a method to use UWB mobile anchor
and improving the localization quality of an agent. This
was done by minimizing the determinant of the covariance
matrix. The minimization will result a set of closed form
equations representing a direction that the mobile anchor
moves in that direction at each time instant.

By using an UWB mobile anchor and the presented
method, the quadcopter was able to reliably fly (hovering
and tracking a trajectory) while the fixed anchors was set in
specific locations to cause a large uncertainty in one direction
which makes the flight very hard. The experimental results
presented in this paper have shown a improvement on the
position estimate (about 14%), which had also an indirect
impact on the improvement of the velocity and attitude
estimates. In addition, the result of a trajectory tracking
scenario showed that the proposed method can be applied
for the moving agents, and will result to reducing the overall
uncertainty of the state estimates.

Future work will investigate using the ranging network to
localize also the mobile anchor, as well as trade-offs inherent
in the choice of the gradient descent gain s.
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