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Abstract— In this work we introduce an approach that allows
a quadcopter to find the velocity which maximizes its flight time
(endurance) or flight distance (range) while moving along a
given path, using on-board power measurement. The proposed
strategy is based on Extremum Seeking control and (a) does
not require any model of the power consumption of the system,
(b) can be executed on-line, and (c) guarantees adaptation to
unknown disturbances. We show experimentally that hovering
is not the most energy-efficient loitering strategy, and we
demonstrate the proposed method’s ability to adapt to different
aerodynamic disturbances, such as payloads. The method may
be especially useful in applications where a quadcopter carries
an unknown payload, allowing it to adapt for improved range.

I. INTRODUCTION

Multicopters are gaining increasing interest as tool for
critical, real-world, outdoor applications such as search and
rescue [1], inspection [2] and transportation [3]. Due to
the relatively simple and inherently redundant mechanical
design, their popularity is also raising for manned transporta-
tion [4] and space exploration [5], [6] applications. However,
the limited flight time and distance of most of the available
platforms [7] severely constrain their range of applications.

A possible solution to limited flight range and endurance
is the deployment of novel designs, such as Vertical Take
Off and Landing (VTOL) platforms [8], [9], tethered mul-
ticopters [10] and hybrid solutions [11]. For existing plat-
forms, efficiency can be improved via hardware optimiza-
tion (e.g. by reducing the weight) or via algorithm-based
optimization.

Algorithm-based optimization offers multiple opportuni-
ties for the improvement of efficiency of aerial machines,
as it is easy to implement, economic to deploy, and can be
used to complement mechanical designs, gaining insights for
novel hardware platforms. Algorithmic improvements can
be achieved via a model-based or a model-free approach.
A model-based approach (e.g. [12], [13], [14]) allows for
the full exploitation of the capabilities of the system, but
relies on the ability to derive and identify an adequate model
of the power consumption of a multicopter. Such a model
is usually focused on capturing the electrical power losses
[15], [16], [17], or the aerodynamic power losses [18] [19],
[20] of the robot. A model-free approach (e.g. [21]), instead,
allows to better take into account hard-to-model, less known
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Fig. 1. Quadcopter carrying different payloads with similar mass but dif-
ferent size. The proposed control scheme finds the speed that maximizes the
range of the vehicle along a given path. It adapts to unknown disturbances,
such as the aerodynamic interference from a payload.

effects, such as changes in performance due to aging of the
components, or changes in the aerodynamics due to payloads.

In this work we present an on-line, model-free, adaptive
approach to find the velocity which maximizes the total flight
time (endurance or loitering time) or flight distance (range)
of a quadcopter, using Extremum Seeking (ES) control.
ES control is a peak-finding technique and is thoroughly
described in e.g. [22]. It has found a relatively wide usage
in robotics, as detailed in the literature survey [23]. Its
applications include aeronautics, where it is employed to
increase power efficiency in formation flight [24]. In our
work, ES control is used to minimize derived cost functions
which express the endurance and range of the robot as a
function of its velocity, given a fixed energy budget. The
proposed scheme autonomously sets the reference velocity
along a predefined path according to the chosen cost func-
tion. By flying along a circular path with a quadcopter, we
show that the algorithm finds the optimal, non-zero, loitering
velocity. We demonstrate that our approach successfully
adapts the reference velocity to the optimal range velocity
in multiple flight scenarios, such as the transportation of the
different payloads shown Fig. 1. We additionally derive a
dynamic model of the power consumption of a quadcopter
to explain some counter-intuitive experimental results and
make predictions outside the capabilities of our testbed.

The remainder of this work is organized as follows:
Section II describes a model of the power consumption of a
quadcopter; Section III introduces the peak-finding scheme
based on ES control; Section IV shows experimental results
and the identification of the model parameters.

II. DYNAMIC MODEL OF A QUADCOPTER UAV
In this section we derive the dynamic model of a quad-

copter that takes into account the electrical power consump-
tion, as measured at the terminals of the on-board battery.



This model enables us to justify some of the counterintuitive
properties of the robot observed in our experimental results
(e.g. power consumption is not monotonically increasing
w.r.t. velocity), and enables predictions on the behavior of the
system beyond the capabilities of our experimental testbed
(e.g. due to limited space to fly indoor).

A. Reference frame definition
As shown in Fig. 2, we define two sets of coordinate

frames: an inertial frame I and a non-inertial frame B,
attached to the Center of Mass (COM) of the quadcopter.

B. Quadcopter dynamics
The quadcopter is modeled as a rigid body with six degrees

of freedom. Its translational and rotational dynamics are
described by the following set of Newton-Euler equations:

mẍ =mg +R
∑

fi + fd (1)

Ṙ =RJωK (2)

Iω̇ =− ω × Iω +
∑

τi (3)

The vector x and its derivatives express the vehicle’s trans-
lational position, velocity and acceleration in the inertial
reference frame I , while ω and its derivative define the
angular velocity and acceleration in the body-fixed frame B.
Each propeller i (i = 1, ..., 4), produces a thrust force fi =
(0, 0, fi) and a torque τi = (0, 0, τi), expressed in B. We
additionally introduce the rotation matrix R, which relates
the frames B and I , and the gravity vector g = (0, 0,−g),
expressed in I . The vector fd, also expressed in I , represents
the drag force modeled as an isotropic drag, which is the sum
of a linear and a quadratic term (see e.g. [25]):

fd =−
(
µ1ν∞ + µ2ν

2
∞
)
eν∞ = fdeν∞

eν∞ =
ν∞
ν∞

, where ν∞ = ‖ν∞‖
(4)

where ν∞ corresponds to the freestream velocity expressed
in I . The scalars µ1 and µ2 represent the drag coefficients
and can be identified experimentally. We additionally assume
that the drag force acts on the COM of the multicopter and
thus no torques are produced.
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Fig. 2. Coordinate frame definition. I represents the inertial reference frame
and B the quadcopter reference frame. We additionally show the thrust force
of the i-th propeller fi, the freestream velocity ν∞, the induced velocity
ν and the angle of attack α, shown positive in the diagram. Freestream
velocity, induced velocity and angle of attack are assumed to be the same
for every propeller and are represented in the center of mass of the robot.

Fig. 3. Power-velocity curve obtained by flying a quadcopter at different
velocities along a horizontal circular path of radius of 1.7 m. We have
highlighted the optimal endurance velocity, corresponding to the speed
that minimizes the electrical power consumption, and the optimal range
velocity, corresponding to the speed that minimizes the ratio between power
and velocity. According to the proposed model, the power consumption at
optimal endurance velocity further decreases by flying along a straight path.

C. Power losses

Following [7], [12], [21], we assume that the total power
consumption p (measured at the terminals of the battery) is
proportional to the aerodynamic induced power [20] pinduced:

p =
1

η
pinduced (5)

where η lumps the conversion losses in the energy flow from
the battery to the propellers and can be obtained experimen-
tally. Assuming constant altitude and forward flight and given
fthrust = f1 + ...+ f4, pinduced is computed as [20]:

pinduced =

4∑
i=1

pinduced,i =

4∑
i=1

κ (ν + ν∞ sinα) fi

= κ (ν + ν∞ sinα) fthrust

(6)

where ν represents the induced velocity applied by the
propeller to the surrounding air. The angle of attack α is
defined as the angle between ν∞ and the plane given by
1B and 2B , as represented in Fig. 2. For simplicity we
have assumed the angle of attack α, the induced velocity
ν and the freestream flow ν∞ to be the same for every
propeller, neglecting effects such as changes in freestream
velocity due to non-zero angular rates ω. The scalar κ is
an empirical correction factor and can be lumped into the
conversion efficiency factor η. The induced velocity ν is
implicitly defined as [20]:

ν =
ν2h√

(ν∞ cosα)2 + (ν∞ sinα+ ν)2
. (7)

The induced velocity at hover νh is obtained from:

νh =

√
mg/4

2ρπr2
(8)

where ρ is the density of the air and r is the radius of
the propellers. Eq. (7) can be solved for ν using numerical
techniques such as the Newton-Raphson [26].
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Fig. 4. Block diagram of a feedback scheme based on Extremum Seeking
(ES) control. The scalar r0 represents the plant’s initial setpoint. The
frequency of the HP and LP filters is set, respectively, to ωHP and ωLP.
The scalar k is a tuning parameter of the controller: setting k > 0 allows
to maximize the output of the plant, while k < 0 minimizes the output.

III. MODEL-FREE ADAPTIVE CONTROL

In this section we introduce the model-free approach
which identifies the optimal range and endurance veloci-
ties of a multicopter, along a predefined reference path.
Small changes in the vehicle’s velocity can affect the power
consumption and thus the range and endurance of the
vehicle, as illustrated in Fig. 3. Identification via model-
based approaches is not always possible, as optimal range
and endurance speed depend on multiple electromechanical
and aerodynamic properties of the vehicle, like the thrust
to lift ratio of propellers, the drag on the fuselage (e.g.
due to payloads), the efficiency of the electric motors and
the efficiency of the electronic speed controllers. Unknown
or un-modeled disturbances, including wind, aging of the
components or attached payloads, can further affect these
optimal operating points. An on-line, adaptive approach is
therefore especially suitable for this task. The proposed
scheme based on Extremum Seeking control is detailed in
the following paragraphs. A main assumption of this work is
that information about the instantaneous power consumption
of the vehicle is available, for example by sensing the voltage
and current at the battery.

A. Extremum Seeking controller

As shown in Fig. 4, ES control allows to find an unknown,
time-varying plant operating point r∗(t) which maximizes or
minimizes a given plant output q(t). The optimal setpoint is
found by applying a small periodic perturbation a sin(ωdt)
to the current reference setpoint r̂(t) and by monitoring
the changes of the plant’s output at the given disturbance
frequency ωd. The scalar a defines the magnitude of the
perturbation, while the disturbance frequency ωd is set at a
value sufficiently small, so that the plant can be considered
a static map. If the perturbed plant’s input r(t) = r̂(t) +
a sin(ωdt) and output q(t) are in phase (i.e. input grows,
output grows) then the reference setpoint r̂(t) is decreased
(assuming that we are minimizing the cost function). If they
are out of phase, r̂(t), which corresponds to the current
estimate of the optimal operating point, is increased. The
persistent nature of the input perturbation a sin(ωdt) allows

to adapt to time-varying systems. A proof of convergence
and further details are provided in [22].

In the context of maximizing the range or endurance of a
quadcopter, we employ an ES controller to set the reference
tangential speed of the vehicle along a desired path. We
define suitable cost functions which relates range (distance
flown) and endurance (time flown) to the speed of the vehicle
and its instantaneous power consumption. The estimate of
the optimal reference tangential velocity, output of the ES
controller, is then used to parametrize the desired path into
a trajectory, which is then fed as input to the position and
attitude controller of the vehicle. A diagram of the system
architecture is shown in Fig. 5.

B. Cost function derivation

In this section we derive two cost functions, one which
relates the velocity of flight of a multicopter with its range
and one with its endurance. We assume that it is given a
constant energy budget, such as the energy stored in the on-
board battery E ∈ [Eempty, Efull]. We additionally assume that
the vehicle (a) is moving at steady state, with ground velocity
of constant magnitude vground, (b) is using a constant power p,
and (c) is maintaining a constant altitude and angular velocity
along the reference path.

1) Endurance mode: The endurance time tendurance is
defined as:

tendurance :=

∫ tend

t0

dt =

∫ Efull

Eempty

1

p
dE =

1

p
∆E (9)

by considering that t0 and tend represent initial and final time
of the mission, corresponding respectively with the full and
empty states of the on-board battery Efull and Eempty, with
∆E = Efull − Eempty. From (9), and given that the total
energy in the battery ∆E is constant, follows that:

max(tendurance)⇔ max
(1

p

)
⇔ min(p) (10)

2) Range mode: The range distance drange is defined as:

drange :=

∫ tend

t0

vground dt =

∫ Efull

Eempty

vground

p
dE =

vground

p
∆E (11)

From (11) follows that:

max(drange) ⇔ max

(
vground

p

)
⇔ min

(
p

vground

)
. (12)

3) Stability, tuning and performance considerations:
a) Stability: convergence of the ES controller is guar-

anteed only if the magnitude of the additive disturbance
a sin(ωdt) on the reference velocity is sufficiently small [22],
and ωd is sufficiently smaller than the natural frequency of
the quadcopter.

b) Tuning: Tuning of the controller requires then to
identify three different time scales in the controlled system:
(a) a “fast” time scale, defined by the dominant (slowest)
dynamics of the plant. In our case this value is set to the dom-
inant pole of the position controller of the quadcopter; (b) a
“medium” time scale, which corresponds to the frequency
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Fig. 5. System diagram employed for on-line optimization of the range or endurance of a quadcopter. Given a desired path, such as a circle of constant
altitude and radius, the Extremum Seeking (ES) controller generates a reference trajectory which is tracked by the vehicle via the position and attitude
controller. The reference trajectory is generated by defining a reference velocity along the desired path. The ES controller automatically sets the reference
velocity which minimizes a given cost function f(·), according to the information provided by the motion capture system about the estimated velocity of
the quadcopter and the current and voltage measurements from the sensors mounted on-board.

Fig. 6. Hardware used for the experimental results. The quadcopter weights
approximately 0.7 kg; the radius of each propeller is 0.1 m. The largest
surface of each box is approximately 0.114 m2, 0.082 m2 and 0.054 m2.

ωd of the disturbance of the ES controller; (c) a “slow” time
scale, which correspond to the dominant frequency of the
high-pass and low-pass filters employed in the ES controller.

c) Performance: while stability requirements signifi-
cantly limit the convergence speed of the controller, they
imply that the action of the persistent disturbance output by
the ES controller has little effect on the worsening of the
power consumption, as the accelerations introduced by the
periodic perturbation are small. Furthermore, we observe that
due to the persistent input perturbation, which guarantees
time-varying adaptation, the controller only converges to a
neighborhood of the optimal setpoint. Convergence time, in
addition, is limited by the speed of the dominant frequency
of the plant (for the time scale separation requirement).

IV. EVALUATION

In this section we present the experimental results to
validate the effectiveness of the proposed on-line, optimal ve-
locity finding approach. The results show that the algorithm
is able to find the optimal range and endurance velocities
despite unknown disturbances and starting from different
initial velocities. In addition, we present how to identify the
parameters of the power model proposed in Section II and
validate the model.

A. Experimental setup

The vehicle used throughout the experimental results is a
custom-built quadcopter, shown in Fig. 6, where we also

Fig. 7. (Top:) Power-velocity curve measured and predicted by our model.
(Bottom) Drag force as a function of the velocity and model prediction
with the identified parameters. The identification setup has been obtained
by flying a quadcopter without a payload along a horizontal circular path
of radius of 1.7 m.

show the payloads used for validation of the proposed
approach. The on-board attitude controller runs at 500 Hz
on a Bitcraze Crazyflie [27] electronic board with a mod-
ified version of the PX4 firmware [28]. Position and other
controllers run off-board, sending commands to the vehicle
via a radio link at 50 Hz. The experiments are executed
indoor, using a commercial motion capture system for the
localization of the vehicle. Due to the size of the flight
space, the circular paths were limited to a maximum radius
of approximately 2.15 m.

B. Model identification and validation

In this section we validate the modeling assumptions
presented in Section II. We identify the model parameters
and compare the predicted and measured power consumption
by flying along a horizontal circular trajectory at different
velocities, without carrying a payload. We assume that the
efficiency of the powertrain and propellers is lumped in the
parameter η, which is identified as:

η =
p̂h

mgνh
(13)

where p̂h corresponds to the measured electrical power
consumption at hover, obtained via the on-board voltage and
current sensor. The induced velocity at hover νh is computed



according to Eq. (8). The drag coefficients are identified by
flying at different velocities along a circular trajectory with
constant altitude and are obtained according to:

f̂thrust = − m

cosφ cos θ
g (14)

f̂drag = (f̂thrustR3I) · eν∞ −mν̇∞. (15)

where for simplicity and to reduce the effects of noise
we have assumed that the vehicle only moves horizontally.
The angles φ and θ correspond, respectively, to the roll
and pitch of the vehicle. Experimentally we obtain that the
powertrain efficiency η ≈ 0.310, the linear drag coefficient
µ1 ≈ 0.153 N m−1 s and the quadratic drag coefficient
µ2 ≈ 0.035 N m−2 s2. A comparison of the estimated and
measured power consumption, as well as the measured and
identified drag, is shown in Fig. 7, where we fly along a
circular trajectory of radius 1.7 m at high speed. We note
that the validation dataset is different from the one used for
identification of the parameters of the model. We can observe
that the model predicts the power consumption well up to
about 3.5 m s−1, and then tends to underestimate the power
demand, potentially due to the simple modeling assumption
of the electrical power losses.

Fig. 8. Experimental results of the convergence of the Extremum Seeking
(ES) controller. In the first plot we observe that the optimal range velocity
differs due to the aerodynamic properties of the transported payload (≈ 3.0
m s−1 for large box, ≈ 3.1 m s−1 for medium, ≈ 3.2 m s−1 for small,
and ≈ 3.6 m s−1 with no box). In the second and third plot we observe that
optimal range and endurance velocity converge despite the different initial
values. The optimal endurance velocity is non-zero due to the effect of the
induced power consumption. The changes in energy per meter and power
for the different scenarios are represented in Fig. 9 and Fig. 10 respectively.

C. Optimal range and endurance velocities along a circular
path

In this part we present the experimental results from the
online peak-finding scheme based ES control which is used
to find the optimal range and endurance velocities of a

Fig. 9. Cost function, expressed as energy/distance, used by the ES
controller to find the optimal range velocity of a quadcopter. The cost
function presents a minimum at ≈ 3.0 m s−1 when a cardboard box is
attached to the quadcopter, and a minimum at ≈ 3.5 m s−1 when no
payload is attached. These results are in agreement with the convergence
velocities shown in Fig. 8 (first and second rows).

Fig. 10. Normalized power of the vehicle flying at different tangential
velocities (with no box), corresponding to the cost function used by the ES
controller to find the optimal endurance velocity.

quadcopter flying a circular path. As described in Section
III-B.3.a, the magnitude of the reference disturbance ωd is
set to 0.2 rad s−1, which is about one decade slower than
the closed-loop dynamic of the position controller, whose
dominant frequency is set to 2.0 rad s−1. We empirically
found that a good value for the amplitude of the disturbance
a is 0.15 m s−1. If faster convergence speed is required and
a larger disturbance can be tolerated, the magnitude of the
perturbation a can be slightly increased.

1) Optimal range velocity: Convergence to optimal range
velocities is demonstrated by flying a quadcopter of mass of
0.665 kg with different payloads along a horizontal circular
path of radius of 1.7 m. The radius of the path is chosen so
that a sufficient safety distance from the walls of the indoor
space is guaranteed even while carrying a large payload.
The employed cost function corresponds to minimize the
expression in Eq. (12), where the power measurement p
is provided by on-board sensors and the magnitude of the
velocity vground is obtained from the output of the state
estimator. The ES controller is tuned so that the gain k is
set to −1. A good value for the cutoff frequencies of the HP
filter ωHP and LP filter ωLP is empirically found to be 0.1
rad s−1.

Experiments were executed using different cardboard
boxes acting as payloads, and with no payload. Each box was
oriented so that its largest surface was facing the direction of



Fig. 11. Optimal endurance velocity and hover-normalized power con-
sumption as a function of the trajectory radius for a quadcopter of mass
m = 0.695 kg and identified drag coefficients, estimated according to the
proposed lumped model. We can observe that the proposed model predicts
a minimum power consumption of approximately 95% of the value at hover
for circular paths of radius larger than approx. 10 m.

motion of the vehicle. By varying the size of the box while
maintaining approximately the same weight of 0.2 kg, we
are able to show convergence to different velocities. Fig. 1
shows the vehicle with the boxes, as used in the experiment.

The experimental results are shown in the first and second
rows of Fig. 8, where we display the estimate of the
optimal reference tangential velocity, as computed by the ES
controller. To verify that the reference velocity converges to
the optimal value, in a separate experiment we fly for 60 s
at different tangential velocities, along a circular path of the
same radius as before, and we record the value assumed by
the employed cost function. The results are shown in Fig. 9.

By comparing the convergence velocities of the ES con-
troller in the first row of Fig. 8 with data in Fig. 9, we observe
that the proposed method finds the optimal range velocities
despite the difference in payloads. In addition, the second
row of Fig. 8 shows that the method finds the optimal range
velocity despite starting from different initial velocities.

2) Optimal endurance velocity: Similar to the optimal
range case, convergence to the optimal endurance velocity
is shown by flying along a circular path of radius 2.15 m
at a fixed altitude, using a quadcopter of 0.695 kg of mass
and no box attached. We set the radius to the maximum
value allowed by the flight space in order to maximize the
potential improvement in energy efficiency, as observed via
our model and as represented in Fig. 11. The employed cost
function corresponds to minimizing the power measured on-
board, as derived in (10). The gain k of the ES controller is
set to −1, while ωHP = ωLP = 0.02 rad/ sec, chosen to be
a decade slower than the frequency of the disturbance. The
convergence results are displayed in the third row of Fig. 8,
where we plot the estimate of the optimal reference tangential
velocity, output of the ES controller (without sinusoidal
disturbance). For comparison, Fig. 10 represents the value
of the employed cost function, obtained by flying for 20 s at
different tangential velocities along the same circular path. In
this case we observe that the minimum of the cost function,
which corresponds to a reduction of approximately 1% of the
power at hover, is reached for a non-zero reference tangential

velocity, corresponding to about 1 m s−1. Such effect is due
to the reduction in induced power consumption for increasing
freestream velocity, as detailed by [20] and also observed
by [7], [12], and justifies why hovering is not the optimal
loitering strategy. From Fig. 8 (third row) we can observe
that the reference tangential velocity successfully converges
to the minimum of the cost function measured in Fig. 10. We
note that shallow nature of the cost function near the optimal
value causes lower sensitivity and weaker convergence than
for the optimal range case. From the derived model we
can additionally observe that increasing the radius of the
circular path helps to increase the endurance of the vehicle.
As shown in Fig. 11, our model predicts an improvement
of approximately 5% of the power consumption at hover for
paths with radius larger than 10 m.

V. CONCLUSION AND FUTURE WORKS

In this work we have presented a method to find the
velocity which maximizes the range or endurance of a
multicopter, given a desired path. Experiments show that
the proposed approach is able to converge to the optimal
velocity independent of the initial speed of the robot. By
varying the aerodynamic drag of the vehicle with different
payloads, we additionally show that our method can adapt
the optimal range velocity to unknown disturbances. From
our modeling efforts and experimental results we observed
that, for circular paths with sufficiently large radius, the
total power consumption as a function of the freestream
velocity of the multicopter is not monotonically increasing,
but presents a minimum for non-zero velocity. This means
that the optimal loitering strategy is not hovering, but rather
flying with some velocity along a straight line or circu-
lar trajectory of sufficiently large radius. Our experiments
achieved a repeatable improvement w.r.t the electrical power
consumption measured at hover (Fig. 10), while flying along
a circular path. Our model predicts further improvements as
the radius of the path increases (Fig. 11), but we could not
verify the consumption along circular paths with larger radius
due to the limited space available.

In the future, we plan to improve the convergence rate of
the proposed adaptive method and study the effects of the
tuning parameters on the convergence speed of the controller.
We also plan to experiment with different desired trajectories
and payloads outdoor, to further validate the effectiveness of
the method and to study the effects of field uncertainties,
such as imperfect localization and wind.
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