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Abstract—Reliable health monitoring of mechanical compo-
nents in aerial robotic systems is crucial to their safe operation.
The highly constrained nature of aerial systems requires that
such systems operate with a minimum of sensing and compu-
tational power. This paper proposes a method for the detection
and diagnosis of motor/propeller degradation on a multicopter
aerial robot. The proposed method works by monitoring the
accelerometer output, and effectively correlates vibration power
to the motor commands, allowing it to estimate the magnitude
of a propeller’s unbalance mass. This is done directly in the time
domain with a recursive implementation. The method makes
low computational and memory demands, and relies only on
the accelerometer almost universally present on aerial robots,
so that it may be easily implemented on existing platforms as
well as new designs. Experiments show reliable detection of a
faulty propeller on three distinct multicopter platforms: two
quadcopters whose masses differ by more than an order of
magnitude, and a hexacopter; one vehicle has brushed motors,
two have brushless motors. The proposed method requires only
a minimum of assumptions about the vehicle’s dynamic model,
and does not (for example) require knowledge of the vehicle’s
center of mass or its mass moment of inertia.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) are used in a wide
range of applications including structural inspection,

parcel delivery, search & rescue, geographic mapping, and
increasingly also as passenger-carrying drones. As they be-
come more widely used, issues of reliability and safety become
increasingly important. The problem of reliable health mon-
itoring on aerial systems is made difficult by such systems’
thrust and energy constraints, as they must operate with a
minimum of sensors and computational power.

A common UAV morphology is the multicopter, which
is popular due to its ability to hover and its mechanical
simplicity, having only one moving part per actuator, and thus
leading to low costs and easy maintenance. A critical point of
mechanical failure for such systems is the motor/propeller pair,
with potential sources of failure including mechanical wear
of the motor bearing or damage to the propellers (typically
due to collisions or mishandling). Typical multicopters have
four propellers [1], with more safety-critical applications often
requiring more propellers to ensure mechanical redundancy in
the event of a failure (see e.g. [2] for a discussion on hexa-
copter design for safety critical applications). Less commonly,
fewer than four propellers may also be used [3], [4].

Multicopter dynamics may typically be accurately captured
by relatively simple models, allowing for the use of powerful
model-based estimation and control strategies. In [5] a model-
based approach for estimating faults is presented, using a
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Thau’s observer, specifically to detect sensor faults. For faults
specific to the actuators, a popular approach is to estimate
the actual force produced by each propeller (e.g. using a
model-based observer), and to compare this to the force that
would be expected given current motor commands. One such
approach is presented in [6], which investigates fault-tolerance
for a hexacopter design by inverting the system dynamics for
detection; in [7] a related approach is applied to an octocopter
and also in [8] for a quadcopter. Similarly, in [9] a model-
based approach is presented where an additive disturbance
is estimated for each actuator, acting as a reduction in the
produced thrust. There, each actuator is assigned a state,
which is used to estimate actuator effectiveness, and may
detect if an actuator produces a force significantly different
from the force an undamaged actuator produces. The direct
measurement of individual thrust forces is presented in [10],
where a quadcopter is equipped with a strain gauge for
each actuator, directly measuring the force that the propeller
produces. Being a more direct approach, and not relying on
the system’s dynamics for estimating the actuator forces means
that such an approach should be more robust to model errors
(e.g. misalignment of the vehicle’s center of mass, due to a
payload); however it requires the addition of multiple sensors
and specialized circuitry not typically found on multicopters.

Some control approaches have also been investigated which
are capable of accommodating an actuator fault without
explicit diagnosis, examples include [11], [12]. A typi-
cal approach to encoding faults is as a propeller loss-of-
effectiveness, wherein the produced actuator force is some
fraction of the desired force, and the goal is to estimate
this fraction. An example of a (re-)planning approach for
quadcopters experiencing such faults is given in [13]. Exam-
ples of systems capable of rearranging their actuator loads
are hexacopters (e.g. [14]) and octocopters (e.g. [15]), while
quadcopters may execute unusual control strategies to continue
flight without one of their actuators [16]. The ability of
an overactuated quadcopter-like design to survive failures is
analyzed in [17]. A comparison of model-based and data-
driven fault detection is presented in [18], specifically applied
to aileron fault detection in a fixed-wing UAV.

Timely detection of a fault has obvious benefits, allowing a
system to either reconfigure its actuation strategy to reduce
the load on damaged actuators, or to execute an urgent
landing to bring the vehicle to a safe state rather than risk
future catastrophic failure. In less extreme circumstances, fault
detection may be used for condition-based maintenance, allow-
ing an operator to understand the evolution of their system
health [19]. Much prior work exists on vibration-based fault
diagnosis, especially for condition-based maintenance. This is
often motivated by the desire to detect/predict tooth-failure
in gearboxes (see, e.g., [20], [21] and references therein). A



broader review, including methods using microphones, is given
in [19]. Timely identification of faults is especially important
for helicopters, where failure of power transmission may be
life-threatening. A review of approaches to identify faults in
the power transmission system for helicopters may be found in
[22]. Often, the goal is simply to determine whether currently
observed vibration levels are indicative of a failure condition,
by e.g. comparing statistical features to threshold values [20].
For gearboxes, identification is simplified because all rotating
components are mechanically coupled. An approach for a
gearbox with varying speed and load is given in [23], which
combines hypothesis testing with a data-driven auto-regressive
with exogenous variables (ARX) model for fault identification.

Herein we present a method for identifying that a failure
condition is present in a multicopter UAV, and specifically
which motor/propeller pair is faulty, using only already-present
sensors. The method uses the power in the accelerometer
signal, and is thus related to, e.g., the root-mean-square
methods of [20]. Identifying which motor/propeller pair is
damaged is complicated by the presence of multiple rotating
sources operating at nearly the same operating points, but
varying rapidly and independently, making application of ex-
isting approaches problematic. Moreover, limited memory and
computation motivates the use of a recursive algorithm, that
does not require collecting and analyzing batched data. The
proposed approach requires a minimum of model knowledge
of the system, specifically only requiring the vehicle’s approx-
imate total mass, and access to accelerometer measurements
and commanded motor forces. The approach is encoded as
an extended Kalman filter (EKF), as this specifically allows
us to relatively easily reason about uncertain quantities in
complex mechatronic systems. The EKF approximately solves
the Bayesian estimation problem for a dynamic nonlinear
system, given noisy measurements related to the quantities of
interest [24]. The extended Kalman filter can be implemented
on even low-cost modern microcontrollers, leading to it being
widely used in mechatronic systems.

This expands on our prior work in [25], wherein we
presented a Fourier-transform-based method for fault identifi-
cation using accelerometer measurements. In that work, iden-
tification required the buffering of a sequence of accelerometer
measurements while the vehicle executed carefully designed
flight patterns, and the offline analysis of this data. In con-
trast, the algorithm presented here does not require specially
designed trajectories, and can be run in real-time even on very
constrained computational hardware.

Specifically, we present a Kalman-filter-based approach that
estimates an unbalance for each propeller, taking as input the
accelerometer measurements and the motor force commands.
The approach is theoretically motivated and analyzed, and
then validated in experiment. A scaling argument is presented
from which follows that the estimator is likely to be (weakly)
more effective on smaller vehicles, as compared to larger
vehicles, as well as on vehicles with fewer propellers. Exper-
imental validation is done over three vehicles, including two
quadcopters and a hexacopter; with the largest vehicle being
thirty times more massive than the smallest; and where one
vehicle uses brushed motors, and two use brushless (speed

controlled) motors. Experiments also compare the results for
two different trajectories – one more sedate, and the other
more informative. Importantly, though the estimator has some
tuning factors that must be specified during implementation,
we show successful identification across all three experimental
platforms with equal parameter settings.

The contribution of this paper is thus 1) the development
of a novel propeller fault detection algorithm, based on ac-
celerometer readings of vibrations due to unbalances on the
propellers, 2) analysis of scaling effects for this estimator
based on vehicle size and design, 3) discussion on the effect
of the flight trajectory on the estimator’s ability to identify a
faulty propeller, and 4) experimental validation of the approach
over three distinct vehicles, with multiple trajectories.

The paper proceeds by presenting the necessary dynamics
modelling, the fault estimation algorithm, a discussion on the
effect of vehicle size and the flown trajectories, experimental
results, and finally a conclusion.

II. MODEL

In this section we briefly review the fundamentals of multi-
copter dynamics, and then develop the relationship between
the vehicle’s accelerometer output and the unbalances on
the vehicle’s propellers. We also give brief discussions on
multicopter propeller speed control, which is required for
the estimator, and force allocation, which is required when
discussing scaling effects.

A. Multicopter dynamics

We model the multicopter as a central body (comprising
a battery, sensors, payload, etc.) connected to Np propellers
with a collective mass of mb. The position of the vehicle’s
center of mass, expressed in the inertial frame, is written as
x, with corresponding acceleration vector ẍ. We assume that
the propellers have equal radius rp and are arranged to rotate
around the body-fixed thrust direction e3, with alternating
handedness. Each propeller i rotates at some angular velocity
ωi relative to the vehicle body, and produces a thrust force fi
acting on the vehicle body which is related to the propeller’s
angular speed through the constant κf,i as (see, e.g., [1])

fi = κf,iω
2
i (1)

Additional external forces may act on the system, such as
aerodynamic disturbances, captured by the force fd. The
translational acceleration of the system’s center of mass is
then given by

mbẍ = Re3

∑
i

fi +mbg + fd (2)

The rotation matrix R evolves as a function of the vehicle
body-frame’s angular velocity ω relative to the inertial, and
the corresponding angular acceleration α is a function of the
external moments τ acting on the system, and the vehicle’s
mass moment of inertia J according to

τ = Jα+ ω × (Jω) (3)



Fig. 1. A quadcopter that has a damaged propeller, indicated by the unbalance
on propeller 1. The triad e1, e2, and e3 define a body-fixed frame.

The translational dynamics are required for the discussion of
the accelerometer output as discussed next, and the rotational
dynamics will be used to discuss force allocation when con-
trolling a multicopter.

B. Unbalance and accelerometer measurement

Each propeller has an unbalance of mass mu,i at a distance
ru,i from its center of rotation, illustrated for the case of
quadcopter in Fig. 1. Note that a damaged propeller can
equivalently have a negative mass “added” where the damage
is, or a positive mass on the opposite side. The angle of
the unbalance with respect to the body-fixed e1 is θi, with
corresponding angular speed ωi.

The rotating unbalance mass causes a radial force on the
shaft and transmitted to the multicopter body, which when
expressed in the body-fixed coordinate system is given below
as fu,i

fu,i = mu,iru,iω
2
i

cos θi
sin θi

0

 =
mu,iru,i
κf,i

fi

cos θi
sin θi

0

 (4)

As the force is internal, it does not affect the motion of the
system center of mass and does not appear in (2).

The vehicle is equipped with an accelerometer, which
measures the proper acceleration of the vehicle as expressed
in the body-fixed frame, a. This proper acceleration is related
to the forces acting on the vehicle, and the vehicle’s total mass
mb, as

a =
1

mb

(∑
i

(fu,i + fie3) + fd

)
+ νa (5)

where νa captures the accelerometer’s additive noise, and fd
external disturbance forces acting on the vehicle besides the
propeller forces and the vehicle’s weight. The summation is
to be understood as over all propellers. We assume that the
accelerometer is mounted sufficiently close to the vehicle’s
center of mass that there are no significant effects due to
the vehicle’s angular velocity or angular acceleration. We
also assume that the vehicle body is rigid so that there are
no internal vibrations. Isolating now the accelerometer’s first
two components (i.e. those components in the plane of the

propeller blades) gives

ax =
∑
i

(
mu,i ru,i
mb κf,i

fi cos θi

)
+

1

mb
fd,x + νa,x (6)

ay =
∑
i

(
mu,i ru,i
mb κf,i

fi sin θi

)
+

1

mb
fd,y + νa,y (7)

For the sake of brevity, we lump the additive disturbances
(sensor noise and disturbance force) together into dx, and
introduce the notation ∆i, so that

dx :=
1

mb
fd,x + νa,x (8)

∆i :=
mu,i ru,i
mb κf,i

(9)

ax =
∑
i

∆ifi cos θi + dx (10)

with the equation for ay following similarly.

C. Propeller speed control

Control of the multicopter is achieved by varying the
individually produced motor forces to achieve specified total
force and torque requirements (see, e.g., [1]). Typically, this
is achieved by computing commanded forces as a linear
combination of a desired total force magnitude, and a desired
three dimensional torque. These command forces fcmd,i are
then typically converted into a commanded angular speed
ωcmd,i for each propeller i, through (1). Usually, each motor-
propeller pair then attempts to track this commanded speed
using a dedicated electronic speed controller. Some vehicles
will instead be equipped with motors that do not offer speed
control, for example when using brushed direct current motors,
and may instead have some open-loop mapping from desired
thrust to e.g. motor PWM command. The true angular speed
of a propeller ωi will, of course, not be exactly equal to the
commanded speed in either case. This is due to the unknown
dynamic response of the propeller to commands, unmodelled
dynamics (e.g. aerodynamic torques acting on the propellers,
or angular momentum effects due to the rotation of the body),
discretization of the speed controller, etc.

As the deviation of the true angular speed from the com-
manded is unknown, it is practically impossible to know or
predict the angle θi of the unbalance, even if it were known ini-
tially. One solution to this problem may be to equip the motors
with additional encoders, so that their rotation may be known
with more certainty; this is however not the approach followed
in this work. Instead, the goal of the presented unbalance
estimator is to exploit only the accelerometer measurements
(6)-(7) and knowledge of the propeller force commands to
infer the unbalance, without requiring any knowledge of the
angles θi.

D. Force allocation

A typical approach to multicopter control is to reduce the
system’s Np force inputs to four kinematic inputs, consisting
of the vehicle’s scalar mass-normalized proper acceleration
magnitude c, and the desired angular acceleration vector α.



These can then be related to a scalar desired total force
magnitude fΣ = mbc, and a torque vector τ through the
Newton and Euler dynamic laws (2)-(3). The geometry of
the vehicle defines a linear relationship relating the individual
motor forces to the total force and torques, represented here
by the matrix A ∈ R4×Np , so that

[
c
α

]
= A

 f1

...
fnp

 (11)

When controlling the vehicle, an inverse relationship is
required to compute commanded motor forces fcmd,i, typically
through a linear map characterized by the ‘mixer matrix’
M ∈ RNP×4, so that fcmd,1

...
fcmd,Np

 = M

[
c
α

]
(12)

For quadcopters, the mixer matrix is the unique inverse of A,
however for vehicles with more than four propellers a pseudo-
inverse is typically employed, specifically

M = AT
(
AAT

)−1
(13)

which results in the least-norm forces to achieve the desired
total force and torque (see, e.g., [26] for an in-depth discussion
on hexacopter control allocation). The matrices A and M are
functions of the locations of the vehicle’s propellers relative
to its center of mass, and the propellers’ thrust-to-torque
characteristics.

E. Propeller effectiveness

If a propeller is damaged, it may be expected that the
thrust produced is less than the expected thrust – this loss of
effectiveness may be captured by the a set of propeller coeffi-
cients ηi, so that κf,i = ηiκf , with κf the nominal propeller
coefficient. These coefficients are thus equivalently defined
as the ratio between actual propeller thrusts and nominally
expected thrusts. The effectiveness may be estimated online,
and could also provide an indication of a fault; they are often
identified (and inverted) so that a vehicle may be controlled
more accurately (see, e.g. the ‘propeller factors’ of [27]).

For near-hover flight, for a symmetric vehicle where all
propellers are expected to produce equal force in hover, and
assuming that the motors track the commanded velocities
accurately, the factors may be estimated using the average
thrust produced as below

η̂i = E

[
fcmd,i

fi

]
≈ Np
mb ‖g‖

E [fcmd,i] (14)

where mb ‖g‖ /Np is the force that each propeller should
produce on average. This uses the fact that, near hover, the
vehicle has zero average translation, thus also zero average ac-
celeration, so that the forces must average to the hover forces.
This method may be compared to the proposed vibration-based
estimation, and will be used in the experimental section of this
paper.

III. ALGORITHM

This section presents the unbalance estimator, using the
accelerometer measurements to identify the propeller unbal-
ances. We assume access to a reasonable estimate of the pro-
pellers’ angular speeds (e.g. through the control commands),
however, this is assumed sufficiently imprecise that we treat
the angles θi as unknown – and specifically we assume no
knowledge about these angles, so that they are modelled as
uniformly randomly distributed. The presented estimator may
thus be used on any multicopter, even if it is not equipped with
complex speed control/motor angle measurement sensors.

A. Assumptions and simplifications

The goal of the estimator is to estimate the unbalances
mu,iru,i, using the accelerometer measurements ax and ay ,
but without relying on precise knowledge of the unbalance
angles θi or the true propeller speed ωi. The approach is to
exploit the signal energy in the accelerometer measurements.
Importantly, the estimator operates in the time domain, and
does not require any manipulation in the frequency domain
(e.g. Fourier transforms), unlike our prior work in [25]. We
assume that the motors are capable of approximately tracking
the commanded angular speeds, so that the commanded forces
are close to the true forces.

Furthermore, we assume that the propellers rotate at high
speeds, and that the unbalance angles θi at the time instants
corresponding to the accelerometer measurements may be
treated as independent sequences, each being white and uni-
formly distributed over [0, 2π) (in other words, assuming total
ignorance of the propeller’s rotation, and that the rotation is
sufficiently fast so that it may be treated as white). Under
these assumptions, we can compute the expected value of the
accelerometer measurement E [·], as below

E [ax] =
1

mb
f̄d,x + ν̄α,x (15)

with f̄d,x and ν̄α,x representing the average disturbance force
and the accelerometer bias, respectively. Thus, the expected
accelerometer measurement contains no information about the
propeller unbalances. The signal power, on the other hand,
depends on the unbalances and will be used for the estimator.

B. Estimator measurements

We define a scalar measurement at time step k, z(k), as
follows, which is expanded upon substitution:

z(k) := ax(k)2 + ay(k)2 (16)

=
∑
i

∆2
i fi(k)2 + dx(k)2 + dy(k)2 (17)

+
∑
i

∑
j 6=i

∆i∆jfi(k)fj(k) cos (θi(k) − θj(k))

+
∑
i

2∆ifi(k) (dx(k) cos θi(k) + dy(k) sin θi(k))

The estimator uses the instantaneous signal power z(k) as
measurement, that is a scalar measurement for each (vector-
valued) accelerometer measurement. Taking the expectation of



(17), and substituting the assumption that the propeller angles
are independent and uniformly distributed yields

E [z(k)] =
∑
i

∆2
i fi(k)2 + E

[
d2
x

]
+ E

[
d2
y

]
(18)

This measurement is informative, as its expected value de-
pends on the unbalances (mu,iru,i), with the relative influence
depending on the instantaneous motor forces fi(k), which
will vary over the course of the flight. Intuitively, for those
flight segments where propeller i produces a larger force, the
corresponding unbalance’s contribution to the accelerometer
signal power will be larger.

The measurement uncertainty is modelled through the ad-
ditive measurement noise νz(k), defined as

z(k) =: E [z(k)] + νz(k) (19)

which is zero-mean by construction, and whose variance may
be tediously computed as

Var [νz(k)] = E
[
νz(k)2

]
= E

[
z(k)2

]
− E [z(k)]

2 (20)

= E
[(
dx(k)2 + dy(k)2

)2]− E
[
dx(k)2 + dy(k)2

]2
+ 2

(
E
[
dx(k)2

]
+ E

[
dy(k)2

])∑
i

∆2
i fi(k)2

+
∑
i

∑
j 6=i

∆2
i∆

2
jfi(k)2fj(k)2 (21)

Evaluating the above is difficult, as it requires information
about the fourth moment of the random variables dx and dy .
However, under the assumption that these quantities are zero-
mean, independent, identically, and normally distributed, with
variance σ2

d, (21) may be simplified to

Var [νz(k)] ≈4σ4
d +

∑
i

∑
j 6=i

∆2
i∆

2
jfi(k)2fj(k)2

+ 4σ2
d

∑
i

∆2
i fi(k)2 (22)

where we’ve used the fact that, for a zero-mean, normally
distributed quantity x, E

[
x4
]

= 3Var [x]
2.

C. Estimating motor forces

From (18) it can be seen that the estimator will require
knowledge of the propeller forces, or equivalently the angular
speed of the propellers. Some multicopters are equipped with
electronic speed controllers that return the current motor
speeds to the vehicle’s main control board, though often this is
not the case (especially in lower-cost vehicles). When direct
measurement of the motor speeds is not available, a simple
method to estimate the motor’s speed is to assume that they
track the commanded angular speed as a first-order system (as
in e.g. [28]) with time constant τm, so that

˙̂ωi =
1

τm
(ωcmd,i − ω̂i) (23)

From the estimated propeller speed, the propeller force can be
recovered using (1).

D. Unbalance estimator

The relationship of (18) is at the heart of the identification
algorithm. Specifically, our goal is to use the knowledge of
the commanded motor forces fcmd,i and a sample variance
from the accelerometer to identify the unbalances mu,iru,i. We
estimate the unbalances by using an (Np + 1)-state extended
Kalman filter, where the first Np states xi relate to the
unbalances as follows:

exi := ∆−1
0

mu,iru,i
mbκf,i

(24)

and the last state is related to the additive noise, with

exNp+1 := σ−1
d,0

√
E [d2

x] (25)

where ∆0 is an initial guess for all the unbalances, and
σd,0 is an initial guess for the additive disturbance’s standard
deviation. The formulation as an exponential relationship is
used to ensure that the quantities of interest remain positive
(as is physically meaningful) without requiring the application
of constraints in the Kalman filter (which may be problematic,
see e.g. [29]). The estimator state vector is then given by
x̂(k) ∈ RNp+1, with associated covariance matrix P(k) ∈
R(Np+1)×(Np+1).

The estimator measurement model is

z(k) =

Np∑
i=1

fi(k)2e2xi∆2
0 + 2e2xNp+1σ2

d,0 + νz(k) (26)

=:h(x, k) + νz(k) (27)

where νz is the measurement noise as defined in (19).
1) Estimator equations: The unbalances’ dynamics, as well

as that of the estimated additive noise variance, is modelled as
being forced by zero-mean, white, and independent noise. In
addition to being simple to implement, this model allows the
estimator to adapt to changing conditions (e.g. if a propeller
is damaged mid-flight), as well as to “forget” bad information
(e.g. due to poor initialization). This noise is quantified by its
scalar standard deviation. For the unbalances, this is denoted
by q∆, and for the additive noise variance’s process noise by
qd, so that the variance prediction equation is

Pp(k) = P(k) + diag
(
q2
∆, . . . , q

2
∆, q

2
d

)
∆t (28)

wherein Pp and P are the variance respectively after the
prediction and measurement steps, and ∆t is the sampling
period of the accelerometer (and thus the period of the
estimator). Due to the exponential encoding of the state, the
quantities q∆ and qd have units s−

1
2 and may be interpreted

as multiplicative uncertainties.
The measurement Jacobian matrix H(k), to be used in the

filter measurement update, is given by

H(k) :=
∂h

∂x

∣∣∣∣
x̂(k)

∈ R1×(Np+1) (29)

Hi =2fi(k)2e2x̂i(k)∆2
0 for i ∈ 1, . . . , Np (30)

HNp+1 =4e2x̂Np+1(k)σ2
d,0 (31)



so that the Kalman filter gain is computed at time k using
the usual Extended Kalman filter equations (see e.g. [24], but
repeated here for completeness) as

K(k) = Pp(k)H(k)T
(
H(k)Pp(k)H(k)T +Rz(k)

)
(32)

x̂(k+1) = x̂(k) +K(k) (z(k) − h(x̂(k), k)) (33)
P(k+1) = (I −K(k)H(k))Pp(k) (34)

wherein

Rz(k) = Var [νz(k)] + r0 (35)

with Var [νz(k)] computed according to (22) and substituting
the estimate x̂(k), and where r0 is an additional tuning term
used to decrease the estimator’s reliance on the measurements.

2) Implementation assumptions: Implementation of the
above estimator requires that a designer specify the estimator
initialization, P (0) and the initial beliefs for the unbalances
∆0 and the accelerometer noise σd,0; and the process noise
magnitudes q∆ and qd, and the additional measurement noise
variance r0 which are effectively tuning parameters. Further
discussion on choosing the tuning parameters is given in the
experimental validation section. Note that the estimator state
x̂ is always initialized to zero.

The implementation also assumes that the disturbances
(external force and accelerometer noise) are zero-mean, in-
dependent, identically normally distributed. The zero-mean
assumption can be approximated well in practice by applying
a high-pass filter to the accelerometer output.

Notable is that the estimator does not require any knowledge
about most vehicle physical parameters, such as its mass
moment of inertia, or the location of the vehicle’s center of
mass. Moreover, an error in the belief of the vehicle mass
mb will simply cause a proportional error in the estimate of
the unbalances; however the relative values of the unbalances
should be mostly unaffected. Furthermore, no detailed knowl-
edge of the disturbance forces fd is required. This implies
that the estimator may be easily used in situations where
these parameters are not (well) known, e.g. in uses such as
package delivery where the payload often changes, and is hard
to characterize accurately. This may be compared to model-
based loss-of-effectiveness fault detection approaches, which
rely on comparison of the force command to the observed
dynamics of the vehicle – in such cases the estimate will be
very sensitive to model mismatch, such as an error in the belief
of the vehicle’s center of mass causing an apparent torque
imbalance in the vehicle.

IV. SCALING EFFECTS AND INFORMATIVE TRAJECTORIES

In this section we reason about the utility of the proposed
algorithm for vehicles of different sizes and with varying
numbers of propellers, as well as for different trajectories
executed by a vehicle. We make some assumptions to deduce
that the algorithm should be more effective for vehicles with
fewer propellers. Moreover, the method is expected to be more
effective for smaller vehicles, though the scaling relationship
may be weak.

A. Informative motions

Estimating the propeller unbalances relies on the individual
forces fi for the different propellers varying over time relative
to one another (in a sufficiently distinct manner), so that the
effects of the propellers’ unbalances are distinct. It is obvious
that, if all commanded forces are equal, the estimator will
not be able to distinguish between propellers – this may
occur for a vehicle at hover in a substantially disturbance-free
environment, for example, or when tracking a constant velocity
trajectory. Similarly, if all forces vary in unison, such as when
performing motions that are primarily along the vertical axis,
the estimator will also be unable to distinguish the effects of
the various unbalances.

However, a vehicle maneuvering through space, specifically
including horizontal motions that require force differences to
produce torques, would have more informative forces and
allow for clearer identification of the unbalances. Indeed, a
vehicle attempting to maintain a constant position while reject-
ing external disturbances will provide similar information as
a vehicle maneuvering without disturbances, and thus permit
identification. A more detailed, quantitative analysis of the
informativeness of different trajectories is beyond the scope
of this work.

B. Scaling effects

1) Vehicle mass: The amplitude of the unbalance’s
contribution to the accelerometer signal scales with(
mu,iru,iω

2
i

)
/mb, from (4). Under the assumption that

the propeller’s mass scales with the mass of the vehicle, it
may be that the mass of a typical unbalance of concern also
scales with the mass of the vehicle, so that the unbalance
signal scales like ru,iω2

i . We assume that the unbalance is at
the propeller tip, so that ru,i is simply the propeller radius,
which is assumed to scale proportionally to the vehicle
length scale, and thus cubically to the vehicle mass, so that
r3
u,i ∼ mb.

Two multicopter scaling laws are suggested in [30], which
may be used to gain insight into the overall scaling effect. The
first is Mach scaling, which assumes that the propeller tip
speed rpωi is constant – this implies that the accelerometer
signal due to the unbalance will scale like 1/rp, or propor-
tionally to m

−1/3
b . The second approach is Froude scaling,

which effectively assumes that the product rpω2
i is constant,

so that the effect is independent of the vehicle size. Thus, in
practice, the unbalance signal will scale either independently
of the vehicle size, or inversely proportionally to the vehicle
scale.

2) Number of propellers: There are a few considerations
when analyzing the effect of varying the number of propellers
on the estimator’s efficacy. If the vehicle mass and propeller
size are held constant, but the number of propellers is varied,
the unbalance’s effect scales inversely proportionally to the
number of propellers – this is due to the factor ω2

i scaling
like the individual force, which scales inversely proportionally
to the number of propellers. Therefore, a vehicle with more
propellers will experience lower vibrations due to an unbal-
ance, all else being equal. Note that this is a very approximate



Fig. 2. The vehicles used in the experiments, with physical parameters given
in Table I.

relationship: adding more motors typically adds a substantial
mass to the vehicle, with the exact relationship depending on
the vehicle structure, payload, etc.

Furthermore, the greater the number of propellers (and thus
larger estimator state-space), the larger the total uncertainty in
the system. The estimator may thus be expected to converge
more slowly for vehicles with more propellers, simply due to
the space of the uncertainty being larger.

Finally, assuming that a vehicle follows a fixed kinematic
trajectory, so that the angular acceleration and proper accel-
eration are fixed, the value of the individual motor forces are
affected by the mixer matrix M , as defined in (13). Noting
that the estimator relies on variations over time of the motor
forces to identify unbalances, the variance of the motor forces
may be used as an approximation of their informativeness.
As the forces are linearly related to the kinematic quantities
of total acceleration and angular acceleration (neglecting the
quadratic angular velocity term in (3)), the singular values
of the mixer matrix give some indication to the ‘gain’ of
the variance from the kinematic quantities to the commanded
motor forces. Tedious computation shows that a vehicle with
Np propellers located symmetrically about the vehicle’s center
of mass at a distance l has mixer matrix with non-zero singular

values
{

mb√
Np
, 2Jxx√

Npl
, Jzz√

Npκτ

}
, where κτ is the scalar relating

the propellers’ force to the torque about their rotational axes.
The terms Jxx and Jzz are the two distinct components of the
mass moment of inertia, corresponding to the mass moment
of inertia about an axis perpendicular to the propellers’ thrust
direction for Jxx, and parallel to the propellers’ thrust direction
for Jzz This relationship suggests that, all else being equal,
a vehicle with more propellers flying the same trajectory will
have more difficulty in identifying a propeller unbalance, as
the force’s individual variability will be lower. The presence
of co-axial rotors pairs does not fundamentally alter the above
considerations, as long as the propellers rotate at independent
speeds.

V. EXPERIMENTAL VALIDATION

In this section the estimator is experimentally evaluated, and
shown to be able to identify a damaged motor/propeller pair,
and also accurately estimate the magnitude of the unbalance
on the damaged propeller. Experiments are done on three
different vehicle types, spanning a thirty-fold change in total
vehicle mass, and having either four or six propellers. Notably,
furthermore, the smallest scale vehicle features brushed motors

TABLE I
PHYSICAL PARAMETERS OF EXPERIMENTAL VEHICLES

Small Medium Large
propeller count Np 4 4 6
mass mb, g 39 690 1170
propeller radius rp, mm 32 100 100
thrust const. κf,i, Ns2/rad2 × 10−8 4.14 764 764

Fig. 3. The damaged propellers used in the experiments, with the removed
propeller sections indicated by dashed outlines, on the right-hand side. The
damage to the small propeller is approximately 5mg, and that to the large
propeller is approximately 40mg.

which do not have any closed-loop speed control, unlike the
two larger vehicles having electronic speed controllers. For the
smallest vehicle the actual forces produced are likely to vary
more from the truth than those of the larger vehicles.

The experiments show the estimator applied to vehicles
with nominal propellers, and with a damaged propeller. Two
different trajectories are used: one where the vehicle has to
move between randomly chosen setpoints with sharply varying
motor forces; and a second trajectory where the vehicle flies
along a horizontal circle, with comparatively smoother motor
forces along the trajectory.

A. Experimental setup

Experiments are conducted in an in-door laboratory en-
vironment featuring a motion capture system used for state
position/attitude tracking of the vehicles. All vehicles are
equipped with a Crazyflie 2.0 flight controller [31] (featur-
ing an STM32F4 microcontroller and an MPU9250 inertial
measurement unit). The unbalance estimator, IMU, and motor
commands are updated at 500Hz, running on this microcon-
troller. The flight control stack is based on a modified PX4-
stack [32], and off-board code uses ROS [33]. Note that the
use of the motion capture system should have no effect on
the evaluation of the estimator; as the estimator relies only on
onboard information, the results will be the same if the vehicle
flies using GPS, or is remotely piloted.

Three different vehicles are used, as shown in Fig. 2, and
their relevant physical parameters are given in Table I. Exper-
iments were done with all nominal propellers, or with a single
damaged propeller. Propellers were manually damaged by
cutting off a part of the propeller tip: the damaged propellers
are shown in Fig. 3.

B. Estimator implementation

The estimator was implemented with the following param-
eters, identical across all three vehicle types unless otherwise
noted. The time constant with which the motors are assumed
to track the commands is set to τm = 15ms. The additional
measurement noise was set to r0 = 100m2/s4 – a value that



was experimentally identified as providing acceptable results
for all platforms. The initial belief of the accelerometer noise
standard deviation was set to σd,0 = 1m s−2. The process
noise for the accelerometer noise state was chosen to be
qd = 0.05√

60
/
√

s, and that for the unbalances as q∆ = 0.2√
60
/
√

s.
These values were chosen based on the intuition that the
accelerometer noise will change slowly (in this case, the stan-
dard deviation of one minute’s drift corresponds to e0.05≈5%
change), while the unbalance masses may change more quickly
(corresponding to approximately 22% magnitude change per
minute).

The initial state uncertainty was set to be diagonal, with the
standard deviation of the unbalance states set to 0.1, and for
the accelerometer noise state set to 0.05. The accelerometer
bias was filtered out with a first-order high-pass filter with
cutoff frequency set to 1Hz. The medium quadcopter and large
hexacopter unbalances in the estimator state were initialized at
the equivalent of 20mg, and the small quadcopter with 2mg,
at the tips of their respective propellers. Though the estimator
state encodes the variables ∆, they are transformed for all
plots and discussions to the equivalent positive unbalance
masses at the tip of the vehicle propeller through (24). The
estimator is not overly sensitive to the selection of the tuning
parameters: identical estimator parameters (including tuning
parameters) were used in all experiments, across the three
different vehicle types, with the only differences being the
number of propellers, the propeller radii, and the initial guess
for the propeller unbalance.

C. Results

1) Small quadcopter: Three experiments are shown in
Fig. 4, which demonstrates the efficacy of the proposed estima-
tor on a very small quadcopter with brushed motors. When the
vehicle has no damaged propellers, the estimated unbalances
quickly decay to values close to zero, and remain there. In the
case of having a damaged propeller, the estimator can quickly
identify which motor/propeller is problematic, and is able to
estimate the magnitude of the unbalance to the correct order of
magnitude. Estimator convergence is shown for two different
trajectories: either the vehicle flies between randomly gener-
ated position setpoints, or the vehicle tracks a horizontal circle
at constant speed. When tracking between randomly assigned
points, the motor forces have a much larger variance, providing
more information for the estimator to identify a damaged
propeller. For this vehicle, and this damaged propeller, the
estimator however performs similarly for both trajectories,
and rapidly identifies the damaged propeller with consistent
estimates of the unbalance. Also visible on the graph is the
effect on the accelerometer measurements when a damaged
propeller is present, showing an approximately three-fold
increase in amplitude of the accelerometer measurements. In
each experiment, the estimator converges after approximately
15s.

2) Medium quadcopter: For the medium quadcopter, the
estimator can also successfully and reliably identify a damaged
propeller, as shown in Fig. 5. The figure compares the esti-
mator performance when flying two different trajectories: one

with randomly chosen position setpoints, and another where
the vehicle flies a steady horizontal circle. In both cases, the
estimator correctly identifies the faulty propeller, but notably
converges slower than with the small quadcopter (requiring on
the order of 100s to converge). The slower convergence corre-
sponds to the predictions made in Section IV, and convergence
time may be reduced by changing the tuning of the estimator
(recall that all experiments used identical parameters).

The commanded motor forces vary much more when the
vehicle flies between randomly assigned points, than when
flying along the circle, therefore the estimated accelerometer
noise is higher for the ‘noisier’ trajectory due to the estimated
propeller speeds being farther from the true speeds over large
force ranges (due to e.g. motor torque limits).

3) Large hexacopter: For the large hexacopter, the esti-
mator can also successfully and reliably identify a damaged
propeller, as is shown in Fig. 6. As for the small quadcopter
trajectories, three cases are shown: an undamaged vehicle
flying to randomly assigned points, a damaged vehicle flying
to randomly assigned points, and a damaged vehicle flying a
horizontal circle. Again, the estimator is capable of identifying
whether a damaged propeller is present, identifying the specific
damaged propeller, and estimating the unbalance to the correct
order of magnitude. Convergence with the hexacopter is slower
than with the two quadcopters, and the circular trajectory is
slightly less informative than the random points trajectory.

Notable is that the estimator converges to an unbalance
value in the range 100 to 120mg on the hexacopter, and 40 to
50mg on the medium quadcopter, though the same damaged
propeller was used. There are two likely causes for this
discrepancy. The first is that that the vehicles’ structures are
not perfectly rigid, as was assumed in the modelling section.
A second cause is the non-linear nature of the estimator where
the states are encoded through the exponential function. Due
to its convexity, a higher variance will lead to an over-estimate
of the states, which can be affected by the choice of estimator
tuning parameters.

4) Comparison to loss-of-effectiveness: Due to the pro-
peller damage, the propeller may be expected to produce less
thrust at a given angular velocity than an undamaged propeller.
We quantify this using the estimated propeller effectiveness
factors as defined in Section II-E, specifically (14).

For the small quadcopter experiments, as shown in
Fig. 4, we compute the propeller factors during the
flight, substituting the sample average for the expecta-
tion of (14), and specifically restricting the sample to
a 20s interval, starting 5s after the vehicle takes off.
The propeller effectiveness for the flights are below:

Flight condition η̂0 η̂1 η̂2 η̂3

No damage, random points 1.17 1.08 1.10 1.01
Damage at 0, random points 1.09 1.06 1.06 1.01
Damage at 0, circle 1.18 1.03 1.08 1.00
Recall that a value of 1.0 indicates a nominal propeller.

The data shows that there is no strong correlation between the
damage applied to propeller 0, and the propeller factors. Thus,
for this system, any loss of effectiveness that may be perceived
is completely masked by variability in the performance of the
brushed motors. This is in contrast to the presented approach,
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Fig. 4. Three experiments done with the small quadcopter. The left-hand column shows a vehicle with no damaged propellers flying between randomly
assigned positions, the middle column shows the same trajectory but with a damaged propeller located at motor 0. The right-hand column also has a damaged
propeller at motor 0, but the vehicle instead flies a circular horizontal trajectory of radius 1m with velocity 1m s−1.
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Fig. 5. Performance of the estimator on the medium quadcopter, with a
damaged propeller on motor 0. The left-hand column shows the vehicle flying
a trajectory between randomly assigned position setpoints (and thus having
rapidly varying motor forces), and the right-hand column of graphs shows
the vehicle flying a horizontal circular trajectory of radius 1m at a speed
of 1m s−1. The estimator correctly identifies the damaged propeller, and the
estimate converges to the same value in both cases.

which was able to rapidly and accurately identify the damaged
propeller.

VI. CONCLUSION

We have presented a propeller fault detector that uses ac-
celerometer measurements to recursively estimate unbalances
present in a multicopter’s rotors. The intuition behind the
estimator is to correlate changes in the accelerometer noise
power to changes in the individual propeller speeds or motor
force commands, allowing the estimator to identify a damaged
propeller, and the magnitude of the damage. The estimator
is shown to work reliably on three diverse platforms, with
substantially different total masses, and different actuators
(brushed/brushless motors).

The algorithm may be useful to small, low cost vehicles,
where adding complex additional sensors for fault detection
is prohibitively expensive or heavy. For larger systems, which
may already include additional sensors, the algorithm provides
an inexpensive, independent method for identifying potential
drive-train issues.

To use the algorithm in a system, a designer would need
to extend what is presented in order to make decisions based
on the estimates; one example would be to define a threshold
for tolerable propeller unbalances – if a vehicle exceeds these
thresholds, a maintenance event is triggered. Alternatively, a
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Fig. 6. Performance of the estimator on the large hexacopter, with a damaged propeller on motor 0. The columns, from left to right, show the vehicle
flying a trajectory between randomly generated points without propeller damage, flying the same trajectory with a damaged propeller at motor 0, and flying
a circular trajectory with a damaged propeller at motor 0. The third row plots the range of the forces commanded, i.e. the minimum and maximum motor
force commanded at each time instant.

health monitoring system may look at the change in unbal-
ances, rather than their absolute value, to flag a maintenance
event, or trigger an emergency landing. Because the estimator
is able to identify the specific damaged motor/propeller pair,
maintenance may be substantially simplified (no expert visual
inspection of all propellers required, for example).

The algorithm may also be readily adapted to other aerial
systems with propellers, such as tailsitter systems (e.g. [34]),
or other hybrid designs (e.g. [35]).
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