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Abstract— We present RAPPIDS: a novel collision checking
and planning algorithm for multicopters that is capable of
quickly finding local collision-free trajectories given a single
depth image from an onboard camera. The primary contri-
bution of this work is a new pyramid-based spatial parti-
tioning method that enables rapid collision detection between
candidate trajectories and the environment. By leveraging the
efficiency of our collision checking method, we shown how
a local planning algorithm can be run at high rates on
computationally constrained hardware, evaluating thousands of
candidate trajectories in milliseconds. The performance of the
algorithm is compared to existing collision checking methods
in simulation, showing our method to be capable of evaluating
orders of magnitude more trajectories per second. Experimental
results are presented showing a quadcopter quickly navigating
a previously unseen cluttered environment by running the
algorithm on an ODROID-XU4 at 30 Hz.

I. INTRODUCTION

The ability to perform high-speed flight in cluttered,
unknown environments can enable a number of useful tasks,
such as the navigation of a vehicle through previously unseen
areas and rapid mapping of new environments. Many existing
planning algorithms for navigation in unknown environments
have been developed for multicopters, and can generally be
classified as map-based algorithms, memoryless algorithms,
or a mixture of the two.

Map-based algorithms first fuse sensor data into a map of
the surrounding environment, and then perform path planning
and collision checking using the stored map. For example,
[1] uses a local map to solve a nonconvex optimization
problem that returns a smooth trajectory which remains
far from obstacles. Similarly, [2]–[5] each find a series of
convex regions in the free-space of a dynamically updated
map, and then use optimization-based methods to find a
series of trajectories through the convex regions. Although
these methods are generally able to avoid getting stuck in
local minima (e.g. a dead end at the end of a hallway),
they generally require long computation times to fuse recent
sensor data into the global map.

Memoryless algorithms, however, only use the latest sen-
sor measurements for planning. For example, [6] and [7] both
use depth images to perform local planning by organizing
the most recently received depth data into a k-d tree, which
enables the distance from a given point to the nearest obstacle
to be quickly computed. The k-d tree is then used to perform
collision checking on a number of candidate trajectories, at
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which point the optimal collision-free candidate trajectory
is chosen to track. A different memoryless algorithm is
presented in [8] which inflates obstacles in the depth image
based on the size of the vehicle, allowing for trajectories
to be evaluated directly in image space. In [9], a significant
portion of computation is performed offline in order to speed
up online collision checking. The space around the vehicle
is first split into a grid, a finite set of candidate trajectories
are generated, and the grid cells with which each trajectory
collides are then computed. Thus, when flying the vehicle, if
an obstacle is detected in a given grid cell, the corresponding
trajectories can be quickly determined to be in collision.
However, such offline methods have the disadvantage of
constraining the vehicle to a less expressive set of possible
candidate trajectories, e.g. forcing the vehicle to only travel
at a single speed.

Several algorithms also leverage previously gathered data
while handling the latest sensor measurements separately,
allowing for more collision-free trajectories to be found than
when using memoryless methods while maintaining a fast
planning rate. For example, in [10] a stereo camera pair
is used onboard a fixed-wing UAV to detect obstacles at
a specific distance in front of the vehicle, allowing for a
local map of obstacles to be generated as the vehicle moves
forward. In [11] a number of recent depth images are used
to find the minimum-uncertainty view of a queried point in
space, essentially giving the vehicle a wider field of view for
planning. Additionally, in [12] the most recent depth image
is both organized into a k-d tree and fused into a local map,
allowing for rapid local planning in conjunction with slower
global planning.

Although the previously discussed planning algorithms
have been shown to perform well in complex environments,
they typically require the use of an onboard computer with
processing power roughly equivalent to a modern laptop.
This requirement can significantly increase the cost, weight,
and power consumption of a vehicle compared to one
with more limited computational resources. We address this
problem by introducing a novel spatial partitioning and
collision checking method to find collision-free trajectories
through the environment at low computational cost, enabling
rapid path planning on vehicles with significantly lower
computational resources than previously developed systems.

The proposed planning algorithm, classified as a memo-
ryless algorithm, takes the latest vehicle state estimate and
a single depth image from an onboard camera as input. The
depth image is used to generate a number of rectangular
pyramids that approximate the free space in the environment.



As described in later sections, the use of pyramids in con-
junction with a continuous-time representation of the vehicle
trajectory allows for any given trajectory to be efficiently
labeled as either remaining in the free space, i.e. inside the
generated pyramids, or as being potentially in collision with
the environment. Thus, a large number of candidate trajec-
tories can be quickly generated and checked for collisions,
allowing for the lowest cost trajectory, as specified by a user
provided cost function, to be chosen for tracking until the
next depth image is captured. Furthermore, by choosing a
continuous-time representation of the candidate trajectories,
each trajectory can be quickly checked for input feasibility
using existing methods.

The use of pyramids to approximate the free space is
advantageous because they can be created efficiently by ex-
ploiting the structure of a depth image, they can be generated
on an as-needed basis (avoiding the up-front computation
cost associated with other spatial partitioning data structures
such as k-d trees), and because they inherently prevent
occluded/unknown space from being marked as free space.
Additionally, because our method is a memoryless method
rather than a map-based method, it is robust to common
mapping errors resulting from poor state estimation (e.g.
incorrect loop closures).

II. SYSTEM MODEL AND RELEVANT PROPERTIES

In this section we describe the form of the trajectories used
for planning and several of their relevant properties. These
properties are later exploited to perform efficient collision
checking between the trajectories and the environment.

We assume the vehicle is equipped with sensors capable
of producing depth images that can be modeled using the
standard pinhole camera model with focal length f . Let the
depth-camera-fixed frame C be located at the focal point of
the image with z-axis zC perpendicular to the image plane.
The point at position (X,Y, Z) written in the depth-camera-
fixed frame is then located x = f X

Z pixels horizontally and
y = f Y

Z pixels vertically from the image center with depth
value Z.

A. Trajectory and Collision Model

We follow [13] and [14] in modeling the desired position
trajectory of the center of mass of the vehicle as the minimum
jerk trajectory between two states, which corresponds to a
fifth order polynomial in time. Let s(t), ṡ(t), and s̈(t) ∈ R3

denote the position, velocity, and acceleration of the center
of mass of the vehicle relative to a fixed point in an inertial
frame. The desired position trajectory is then defined by the
initial state of the vehicle, defined by s(0), ṡ(0), and s̈(0),
the duration of the trajectory T , and the desired state of the
vehicle at the end of the trajectory, defined by s(T ), ṡ(T ),
and s̈(T ). A desired position trajectory of the vehicle can
then be written as

s(t) =
α

120
t5 +

β

24
t4 +

γ

6
t3 +

s̈(0)

2
t2 + ṡ(0)t+ s(0) (1)

where α, β, and γ ∈ R3 are constants that depend only
on s(T ), ṡ(T ), s̈(T ), and T . Note that the thrust direction

of the vehicle (and thus its roll and pitch) is defined by its
acceleration s̈(t). We refer the reader to [13] for details re-
garding this relation, as well as methods for quickly checking
whether constraints on the minimum and maximum thrust
and magnitude of the angular velocity of the multicopter are
satisfied throughout the duration of the trajectory. We define
s(t) as a collision-free trajectory if a sphere S centered at
s(t) that contains the vehicle does not intersect with any
obstacles for the duration of the trajectory.

We additionally define a similar trajectory sc(t) with
initial position sc(0) coincident with the depth-camera-fixed
frame C such that

sc(t) =
α

120
t5+

β

24
t4+

γ

6
t3+

s̈(0)

2
t2+ ṡ(0)t+sc(0) (2)

The trajectory sc(t) is used for collision checking rather
than directly using the trajectory of the center of mass s(t)
because sc(t) originates at the focal point of the depth image,
allowing for the use of the advantageous properties of sc(t)
described in the following subsections. Let SC be a sphere
centered at sc(t) with radius r that contains the sphere S.
If the larger sphere SC does not intersect with any obstacles
for the duration of the trajectory, we can then also verify
that the sphere containing the vehicle S remains collision-
free. Thus, we can use sc(t) and its advantageous properties
to check if s(t) is collision-free at the expense of a small
amount of conservativeness related to the difference in size
between the outer sphere SC and inner sphere S.

B. Trajectory sections with monotonically changing depth
We split a given trajectory, e.g. sc(t), into different sec-

tions with monotonically increasing or decreasing distance
along the z-axis zC of the depth-camera-fixed frame C (i.e.
into the depth image) as follows. First, we compute the rate
of change of sc(t) along zC as ḋz(t) = zC · ṡc(t). Then,
by solving ḋz(t) = 0 for t ∈ [0, T ], we can find points Tz at
which sc(t) might change direction along zC , defined as

Tz = {ti : ti ∈ [0, T ], ḋz(ti) = 0} ∪ {0, T} (3)

Note Tz can be computed in closed-form because it only
requires finding the roots of the fourth order polynomial
ḋz(t) = 0.

Splitting the trajectory into these monotonic sections is
advantageous for collision checking because we can compute
the point of each monotonic section with the deepest depth
from the camera by simply evaluating the endpoints of the
section. Thus, we can avoid performing collision checking
with any obstacles at a deeper depth than the deepest point
of the trajectory.

C. Trajectory-Plane Intersections
A similar method can be used to quickly determine if

and/or when a given trajectory intersects with an arbitrary
plane defined by a point p ∈ R3 and unit normal n ∈ R3.
Let the distance of the trajectory from the plane be written
as d(t) = n · (sc(t) − p). The set of times Tcross at which
sc(t) intersects the given plane are then defined as

Tcross = {ti : ti ∈ [0, T ], d(ti) = 0} (4)



requiring the solution of the equation d(t) = 0. Unfortu-
nately, d(t) is in general a fifth order polynomial, meaning
that its roots cannot be computed in closed-form and require
more computationally expensive methods to find.

To this end, we extend [13] and [14] in presenting the
conditions under which finding Tcross can be reduced to
finding the roots of a fourth order polynomial. Specifically, if
a single crossing time of d(t) is known a priori, d(t) = 0 can
be solved by factoring out the known root and solving the
remaining fourth order polynomial. This property is satisfied,
for example, by any plane with p := sc(0) (i.e. a plane that
intersects the initial position of the trajectory), resulting in
the following equation for d(t):

d(t) = n ·
(
α

120
t4 +

β

24
t3 +

γ

6
t2 +

s̈(0)

2
t+ ṡ(0)

)
t (5)

Thus, the remaining four unknown roots of (5) can be
computed using the closed-form equation for the roots of a
fourth order polynomial, allowing for Tcross to be computed
extremely quickly. As described in the following section, we
exploit this property in order to quickly determine when a
given trajectory leaves a given pyramid.

III. ALGORITHM DESCRIPTION

In this section we describe the our novel pyramid-based
spatial partitioning method, its use in performing efficient
collision checking, and the algorithm used to search for the
best collision-free trajectory.1

A. Pyramid generation

For each depth image generated by the vehicle’s depth
sensor, we partition the free space of the environment using
a number of rectangular pyramids, where the apex of each
pyramid is located at the origin of the depth camera-fixed
frame C (i.e. at sc(0)), and the base of each pyramid is
located at some depth Z and is perpendicular to the z-axis
of the depth camera-fixed frame zC as shown in Figure 1.

The depth value stored in each pixel of the image is used
to define the separation of free space F and occupied space
O. We additionally treat the space U located outside the field
of view of the camera at depth l from the camera focal point
as occupied space. Pyramid P is defined such that while
trajectory sc(t) remains inside P , the sphere containing
the vehicle SC will not intersect with any occupied space,
meaning that the segment of sc(t) inside P can be considered
collision-free.

Note that if sc(t) remains inside the pyramid, we can
not only guarantee that the vehicle will not collide with
any obstacles detected by the depth camera, but that the
vehicle will not collide with any occluded obstacles either.
This differs from other methods that treat each pixel in the
depth image as an individual obstacle to be avoided, which
can result in the generation of over-optimistic trajectories that
may collide with unseen obstacles. Furthermore, our method

1An implementation of the algorithm can be found at https://
github.com/nlbucki/RAPPIDS

Fig. 1. 2D side view illustrating the generation of a single pyramid P ,
shown in green, from a single depth image and given point s. The depth
values of each pixel are used to define the division between free space F
and occupied space O. Because the depth camera has a limited field of
view, we additionally consider any space outside the field of view farther
than distance l from the camera to be unknown space U , which is treated
the same as occupied space. The expanded pyramid Pexp (dash-dotted line)
is first generated such that it does not contain any portion of O or U , and
then used to define pyramid P such that it is distance r from any obstacles.

straightforwardly incorporates field of view constraints, al-
lowing for the avoidance of nearly all unseen obstacles in
addition to those detected by the depth camera.

The function INFLATEPYRAMID is used to generate a
pyramid P by taking an initial point s as input and returning
either a pyramid containing s or a failure indicator. In this
work we choose s to be the endpoint of a given trajectory
that we wish to check for collisions, and only generate a new
pyramid if s is not already contained in an existing pyramid
(details are provided in the following subsection). We start
by projecting s into the depth image and finding the nearest
pixel p. Then, pixels of the image are read in a spiral about
pixel p in order to compute the largest possible expanded
rectangle Pexp that does not contain any occupied space.
Finally, pyramid P is computed by shrinking the expanded
pyramid Pexp such that each face of P is not within vehicle
radius r of occupied space. Further details regarding our
implementation of INFLATEPYRAMID can be found online.1

This method additionally allows for pyramid generation
failure indicators to be returned extremely quickly. For
example, consider the case where the initial point s exists
inside occupied space O. Then, only the depth value of the
nearest pixel p must be read before finding that no pyramid
containing s can be generated, requiring only a single pixel
of the depth image to be processed. This property greatly
reduces the number of operations required to determine when
a given point is in collision with the environment.

B. Collision checking using pyramids

Algorithm 1 describes how the set of all previously
generated pyramids G is used to determine whether a given
trajectory sc(t) will collide with the environment. A tra-
jectory is considered collision-free if it remains inside the
space covered by G for the full duration of the trajectory.
An example of Algorithm 1 is shown in Figure 2.

We first split the trajectory sc(t) into sections with

https://github.com/nlbucki/RAPPIDS
https://github.com/nlbucki/RAPPIDS


Algorithm 1 Single Trajectory Collision Checking
1: input: Trajectory sc(t) to be checked for collisions, set

of all previously found pyramids G, depth image D
2: output: Boolean indicating if trajectory is collision-free,

updated set of pyramids G
3: function ISCOLLISIONFREE(sc(t), G, D)
4: M← GETMONOTONICSECTIONS(sc(t))
5: while M is not empty do
6: s̄c(t)← POP(M)
7: s̄← DEEPESTPOINT(s̄c(t))
8: P ← FINDCONTAININGPYRAMID(G, s̄)
9: if P is null then

10: P ← INFLATEPYRAMID(s̄,D)
11: if P is null then
12: return false
13: PUSH(P)→ G
14: t↓ ← FINDDEEPESTCOLLISIONTIME(P, s̄c(t))
15: if t↓ is not null then
16: PUSH(GETSUBSECTION(s̄c(t), t

↓))→M
17: return true

monotonically changing depth as described in Sec-
tion II-B, and insert the sections into list M using
GETMONOTONICSECTIONS (line 4). Then, for each mono-
tonic section s̄c(t), we compute the deepest point s̄ (i.e.
one of the endpoints of the section), and try to find
a pyramid containing that point (line 6-8). The function
FINDCONTAININGPYRAMID (line 8) returns either a pyra-
mid that contains s̄ or null, indicating no pyramid containing
s̄ was found. If no pyramid in G contains s̄, we attempt to
generate a new pyramid using the method described in the
previous subsection (line 10), but if pyramid generation fails
we declare the trajectory to be in collision (line 12).

Next, we try to compute the deepest point at which the
monotonic section s̄c(t) intersects one of the four lateral
faces of the pyramid P . Using the method described in
Section II-C, we compute the times at which s̄c(t) intersects
each lateral face of the pyramid, and choose the time t↓ at
which s̄c(t) has the greatest depth (line 14). If s̄c(t) is found
to not collide with any of the lateral faces of the pyramid,
then it necessarily must remain inside the pyramid and the
section can be declared collision-free. However, if s̄c(t) does
collide with one of the lateral faces of the pyramid, we split
it at t↓ and add the section of s̄c(t) that is outside of the
pyramid to M (line 16). Thus, if each subsection of the
trajectory is found to be inside the space covered by the set
of pyramids G, then the trajectory is declared collision-free
(line 17).

Note that this method of collision checking allows for
pyramids to be generated on an as-needed basis rather than
requiring all pyramids to be generated in a batch process
when a new depth image arrives. This additionally avoids
generating unneeded pyramids; only those required for col-
lision checking are created.

Fig. 2. 2D example of the collision checking method described by
Algorithm 1 as used to check a given trajectory for collisions. The trajectory
is first split into sections with monotonically changing depth, which are
stored in list M. Top: A single trajectory section s̄c(t) is chosen from list
M. The deepest point of the trajectorysection s̄ is computed and pyramid
P1 containing s̄ is generated. The trajectory s̄c(t) is then subdivided into a
section that remains inside the pyramid (black) and a section that leaves the
pyramid (gray). Bottom: The trajectory section that leaves P1 is checked for
collisions in the same manner. Pyramid P2 is generated using the deepest
point of the trajectory section, and then used to verify that the trajectory
section does not collide with the environment.

C. Planning algorithm

Algorithm 2 describes the path planning algorithm used
in this work. The algorithm takes as input the most recently
received depth image and vehicle state estimate, where the
state estimate partially defines each candidate trajectory
as given in (2). Within a user-specified time budget, the
algorithm repeatedly generates and evaluates candidate tra-
jectories for cost and the satisfaction of constraints, returning
the lowest cost trajectory that satisfies all constraints. We
choose to use a random search algorithm due to its simplicity
and probabilistic optimality, though the collision checking
algorithm presented in the previous subsection can be used
in conjunction with other planning algorithms as well (see
[15], for example).

Algorithm 2 Lowest Cost Trajectory Search
1: input: Latest depth image D and vehicle state
2: output: Lowest cost collision-free trajectory found s∗c(t)

or an undefined trajectory (indicating failure)
3: function FINDLOWESTCOSTTRAJECTORY()
4: s∗c(t)← undefined with COST(s∗c(t)) =∞
5: G ← ∅
6: while computation time not exceeded do
7: sc(t)← GETNEXTCANDIDATETRAJ()
8: if COST(sc(t)) < COST(s∗c(t)) then
9: if ISDYNAMICALLYFEAS(sc(t)) then

10: if ISCOLLISIONFREE(sc(t), G, D) then
11: s∗c(t)← sc(t)

12: return s∗c(t)



Let GETNEXTCANDIDATETRAJ be defined as a function
that returns a randomly generated candidate trajectory sc(t)
using the methods described in [13] (line 7). The function
COST is a user-specified function used to compare candidate
trajectories (line 8). In this work, we define COST to be the
following, where d is a desired exploration direction:

COST(sc(t)) =
d · (sc(0)− sc(T ))

T
(6)

That is, better trajectories are those that cause the vehicle to
move quickly in the desired direction d. Note, however, that
COST can be defined arbitrarily by the user to include other
objectives based on the desired behavior of the vehicle (e.g.
to favor increased distance to other vehicles or people).

The function ISDYNAMICALLYFEAS (line 9) checks
whether the given candidate trajectory satisfies constraints
on the total thrust and angular velocity of the vehicle using
methods described in [13]. Finally, the candidate trajec-
tory is checked for collisions with the environment using
ISCOLLISIONFREE (line 10). We check for collisions with
the environment last because it is the most computationally
demanding step of the process.

In this way, Algorithm 2 can be used as a high-rate local
planner that ensures the vehicle avoids obstacles, while a
global planner that may require significantly more compu-
tation time can be used to specify high-level goals (e.g. the
exploration direction d) without the need to worry about
obstacle avoidance or respecting the dynamics of the vehicle.
We run Algorithm 2 in a receding-horizon fashion, where
each new depth image is used to compute a new collision-
free trajectory. We additionally constrain our candidate tra-
jectories to bring the vehicle to rest, so that if no feasible
trajectories are found during a given planning step, the last
feasible trajectory can be tracked until the vehicle comes to
rest.

IV. ALGORITHM PERFORMANCE

In this section we assess the performance of the proposed
algorithm in terms of its conservativeness in labeling trajec-
tories as collision-free, its speed, and its ability to evaluate
a dense set of candidate trajectories in various amounts of
compute time. We additionally compare our method to other
state-of-the-art memoryless planning algorithms.

To benchmark our collision checking method, we conduct
various Monte Carlo simulations using a series of randomly
generated synthetic depth images and vehicle states. Exam-
ples of several generated depth images are shown in Figure 3.
The image is generated by placing two 20 cm thick rectangles
with random orientations in front of the camera at distances
sampled uniformly at random on (1.5m, 3m). Note that this
choice of obstacles is arbitrary; any number, distribution,
or type of obstacles could be used to conduct such tests.
However, rather than trying to emulate a specific type of
environment, we choose to use obstacles in our benchmark
that are primarily easy to both visualize and reason about
conceptually. Furthermore, the use of such obstacles does
not unfairly benefit the proposed collision checking method

Fig. 3. Three examples of synthetic depth images used for benchmarking
the proposed algorithm. Two rectangular obstacles are generated at different
constant depths. The background is considered to be at infinite depth.

by, e.g., breaking the free-space into regions that may be
easier to describe using pyramids.

The initial velocity of the vehicle in the camera-fixed z-
direction zC is sampled uniformly on (0m s−1, 4m s−1),
and the initial velocity of the vehicle in both the x-direction
xC and y-direction yC is sampled uniformly on (−1m s−1,
1m s−1). We assume the camera is mounted such that zC
is perpendicular to the thrust direction of the vehicle, and
thus set the initial acceleration of the vehicle in both the xC

and zC directions to zero. The initial acceleration in the yC
direction is sampled uniformly on (−5m s−2, 5m s−2).

The planner generates candidate trajectories that come to
rest at randomly sampled positions in the field of view of the
depth camera. Specifically, positions in the depth image are
sampled uniformly in pixel coordinates and then deprojected
to a depth that is sampled uniformly on (1.5m, 3m). The
duration of each trajectory is sampled uniformly on (2 s, 3 s).

The algorithm was implemented in C++ and compiled
using GCC version 5.4.0 with the -O3 optimization setting.
Three platforms were used to assess performance: a laptop
with an Intel i7-8550U processor set to performance mode,
a Jetson TX2, and an ODROID-XU4. The algorithm is run
as a single thread in all scenarios.

A. Conservativeness

We first analyze the accuracy of the collision checking
method described by Algorithm 1. A key property of our
method is that it will never erroneously label a trajectory
as collision-free that either collides with an obstacle or has
the potential to collide with an occluded obstacle. Such a
property is typically a requirement for collision checking al-
gorithms used with aerial vehicles, as a trajectory mislabeled
as collision-free can result in a catastrophic crash resulting
in a total system failure.

However, because the generated pyramids cannot exactly
describe the free space of the environment, our method may
erroneously label some collision-free trajectories as being
in-collision. In order to quantify this conservativeness, we
compare our method to a ground-truth, ray-tracing based col-
lision checking method capable of considering both field-of-
view constraints and occluded obstacles. We define conser-
vativeness as the number of trajectories erroneously labeled
as in-collision divided by the total number of trajectories
labeled (both correctly and incorrectly) as in-collision. A
single test consists of first generating a synthetic scene and
random initial state of the vehicle as previously described.
We then generate 1000 random trajectories for each scene,



Fig. 4. Conservativeness of the collision checking algorithm as a function
of the maximum number of pyramids allowed to be generated. We define
conservativeness as the number of trajectories erroneously labeled as in-
collision divided by the total number of trajectories labeled as in-collision.
The free-space of the environment is described with increasing detail as
more pyramids are allowed to be generated, leading to a lower number of
trajectories being erroneously labeled as in-collision.

and perform collision checking both with our method and
the ground-truth method. The number of trajectories both
correctly and incorrectly labeled as in-collision are averaged
over 104 such scenes. Additionally, in order to quantify how
well the environment can be described using the pyramids
generated by our method, we limit the number of pyramids
the collision checking algorithm is allowed to use, and repeat
this test for various pyramid limits.

Figure 4 shows how the over-conservativeness of our
method decreases as the number of pyramids allowed to
be used for collision checking increases. The percent of
mislabeled trajectories is initially higher because the en-
vironment cannot be described with high accuracy using
fewer pyramids. However, conservativeness remains nearly
constant for larger pyramid limits, indicating that our method
may erroneously mislabel a small number of collision-free
trajectories (e.g. those in close proximity to obstacles). Note
that we do not limit the number of pyramids generated when
using the planning algorithm described in Algorithm 2, as we
have found it to be unnecessary in practice.

B. Collision Checking Speed

Next we compare our collision checking method to the
state-of-the-art k-d tree based methods described in [6] and
[7]. Both our method and k-d tree methods involve two
major steps: the building of data structures (i.e. a k-d tree,
or the pyramids described in this paper) and the use of
those data structures to perform collision checking with
the environment. Our method differs from k-d tree based
methods, however, in its over-conservativeness. Specifically,
we consider trajectories that pass through occluded space
to be in collision with the environment, while k-d tree
based methods only consider trajectories that pass within the
vehicle radius of detected obstacles to be in collision.

We compare our method to the k-d tree methods by first
limiting the amount of time allocated for pyramid generation
such that it is similar to the time required to build a k-d tree
as reported in [6] and [7] (roughly 1.81ms). We then check
1000 trajectories for collisions, and compute the average time

TABLE I
AVERAGE COLLISION CHECKING TIME PER TRAJECTORY

Computer Single Trajectory
Collision Check (µs)

Florence et al.2[6] i7 NUC 56
Lopez et al.2 [7] i7-2620M 48
RAPPIDS (ours) i7-8550U 1.20
RAPPIDS (ours) Jetson TX2 3.81
RAPPIDS (ours) ODROID-XU4 8.72

required to check a single trajectory for collisions using
the generated pyramids. Similar to [6] and [7], we use a
160× 120 resolution depth image which we generate using
the previously described method, and average our results over
104 Monte Carlo trails.

Table I shows how the average performance of our method
outperforms the best-case results reported by [6] and [7].
On average 27.5, 19.3, and 15.3 pyramids were generated
during the allocated 1.81ms pyramid generation time on i7,
TX2, and ODROID platforms respectively. The difference
in computation time can be reasoned about using a time
complexity analysis. Let a given depth image contain n
pixels. Then O(nlog(n)) operations are required to build a
k-d tree, while O(n) operations are required to generate a
single pyramid (of which there are typically few). Because a
single k-d tree query takes O(log(n)) time, if the trajectory
must be checked for collisions at m sample points along the
trajectory, then the time complexity for checking a single
trajectory for collisions is O(mlog(n)). However, collision
checking a single trajectory using our method can be done
in near constant time, as it only requires finding the roots of
several fourth order polynomials (which is done in closed-
form) as described in Section II-C. Additionally, note that
while an entire k-d tree must be built before being used to
check trajectories for collisions, the pyramids generated by
our method can be built on an as-needed basis, reducing
computation time even further.

C. Overall Planner Performance

Finally, we describe the overall performance of the plan-
ner, i.e. Algorithm 2, using the same Monte Carlo simulation
but with 640 × 480 resolution depth images, which are the
same resolution as those used in the physical experiments
described in the following section. The number of trajectories
evaluated by the planner is used as a metric of performance,
where a larger number of generated trajectories indicates a
better coverage of the trajectory search space and thus higher
likelihood of finding the lowest possible cost trajectory
within the allocated planning time.

Figure 5 shows the results of running the planner for
104 Monte Carlo trails each on the i7-8550U processor, the
Jetson TX2, and the ODROID-XU4 for computation time
limits between 0ms and 50ms. Naturally, as computation
time increases, the average number of trajectories evaluated
increases monotonically. Furthermore, we observe that the

2The best reported average collision checking time required per trajec-
tory is used for comparison.



Fig. 5. Average planner performance as a function of allocated computation
time across various platforms. As computation time increases, the number of
trajectories evaluated increases at different rates for platforms with different
amounts of computation power.

i7-8550U outperforms the Jetston TX2, which outperforms
the ODROID-XU4. The difference in performance can be
explained by the fact that the Jetston TX2 and especially
the ODROID-XU4 are intended to be low-power devices
capable of being used in embedded applications. However,
due to the computational efficiency of our collision checking
method, we found that even the ODROID-XU4 is capable of
evaluating a sufficiently large number of trajectories within
a small amount of time. This makes it feasible to use low-
power devices such as the ODROID-XU4 as onboard flight
controllers while still achieving fast, reactive flight.

V. EXPERIMENTAL RESULTS

In this section we demonstrate the use of the proposed
algorithm on an experimental quadcopter, shown in Figure
6. The quadcopter has a mass of 1.0 kg, and is equipped
with an ODROID-XU4, RealSense D435i depth camera,
RealSense T265 tracking camera, and Crazyflie 2.0 flight
controller. The ODROID is used in order to demonstrate
the feasibility of running the proposed algorithm at high
rates on cheap, low mass, and low power hardware. The
tracking camera provides pose estimates to the ODROID
at 200Hz, which a Kalman filter uses to compute transla-
tional velocity estimates. Filtered acceleration estimates are
obtained at 100Hz using the IMU onboard the crazyflie
flight controller. The depth camera is configured to capture
640×480 resolution depth images at 30Hz, and the proposed
planning algorithm is run for 30ms when each new depth
image arrives using the latest state estimate provided by
the Kalman filter. If no collision-free trajectories can be
found during a given planning stage, the vehicle continues to
track the most recently found collision-free trajectory from
a previous planning stage until either a new collision-free
trajectory is found or the vehicle comes to rest.

The vehicle was commanded to fly in a U-shaped tunnel
environment that was previously unseen by the vehicle,
shown in Figure 7. Each branch of the tunnel measured
roughly 2.5m in width and height, 20m in length, and
was filled with various obstacles for the vehicle to avoid.

Fig. 6. Vehicle used in experiments. A RealSense D435i depth camera
is used to acquire depth images, and a RealSense T265 tracking camera
is used to obtain state estimates of the vehicle. The proposed algorithm is
run on an ODROID-XU4, which sends desired thrust and angular velocity
commands to a Crazyflie 2.0 flight controller.

Fig. 7. Visualization of flight experiment in U-shaped tunnel environment.
The path of the vehicle is shown as a red line. The vehicle starts at the
green sphere and ends at the red sphere. The map of the environment
(top) is generated at the end of the experiment using depth images captured
by the depth camera. Two depth images (bottom) where no collision-free
trajectories were found are shown to illustrate cases where the planner fails.
Pixels with depth values less than 0.75m but greater than the vehicle radius
are highlighted in blue. In the left image, an obstacle occludes a significant
portion of the image, preventing collision-free trajectories from being found
due to the proximity of the obstacle to the vehicle. In the right image, a
very small amount of noise is present near the bottom of the image, causing
the planner to hallucinate the presence of close proximity obstacles in what
would otherwise be free-space. A full video of the experiment is attached
to this paper.3

The candidate trajectories generated by the planner were
generated using the same method described in Section IV.
A video of the experiment is attached to this paper.3

The desired exploration direction d used to compute the
cost of each candidate trajectory as given by (6) is set as
follows. We initialize d to be horizontal and to point down
the first hallway. When the vehicle is at rest and no feasible
trajectories are found by the planner, the desired exploration
direction d is rotated 90◦ to the right of the vehicle, allowing
the vehicle to navigate around corners. We then stop the test
when the vehicle reaches the end of the second hallway.
We use this method of choosing the exploration direction
simply as a matter of convenience in demonstrating the
use of our algorithm in a cluttered environment. However,
many other suitable methods of providing high-level goals
to our algorithm can be used (e.g. [16]), but are typically
application dependent and thus are not discussed here.

3The video can also be viewed at https://youtu.be/
Pp-HIT9S6ao

https://youtu.be/Pp-HIT9S6ao
https://youtu.be/Pp-HIT9S6ao


Fig. 8. Cumulative number of planning stages where at least one collision-
free trajectory was found. The sections of the graph highlighted in red
correspond to periods in which the vehicle is facing the wall at the end of the
hallway. A large increase in successful planning stages is observed between
22 s and 26 s when the vehicle is navigating in the relatively uncluttered
area between the two hallways.

During the experiment, the vehicle was able to find at least
one collision-free trajectory in 35.3% of the 30ms planning
stages. Of the planning stages where at least one feasible
trajectory was found, 2069.2 candidate trajectories and 2.9
pyramids were generated on average. The vehicle traveled
approximately 40m over 43 s, and attained a maximum speed
of 2.66m s−1.

The low percentage of planning stages where at least
one collision-free trajectory was found primarily are cases
where the vehicle passes closely to obstacles and also by
the significant amount of noise present in the depth images.
Figure 7 shows examples of both cases. Note that the amount
of noise present in the depth images can be reduced via
filtering, although this may lead to the potential misdetec-
tion of small and/or thin obstacles. Additionally, Figure 8
shows how the successful planning stages are distributed
throughout the experiment. A lower percent of successful
planning stages is observed when the vehicle is navigating
the cluttered hallways than the relatively open area between
the two hallways, which is potentially due to the difference
in obstacle density and lighting conditions (leading to a
difference in depth image noise levels).

VI. CONCLUSION

In this paper we presented a novel pyramid-based spatial
partitioning method that allows for efficient collision check-
ing between a given trajectory and the environment as rep-
resented by a depth image. The method allows multicopters
with limited computational resources to quickly navigate
cluttered environments by generating collision-free trajecto-
ries at high rates. A comparison to existing state-of-the-art
depth-image-based path planning methods was performed via
Monte Carlo simulation, showing our method to significantly
reduce the computation time required to perform collision
checking with the environment while being more conserva-
tive than other methods by implicitly considering occluded
obstacles. Finally, real-world experiments were presented
that demonstrate the use of our algorithm on computationally
low-power hardware to perform fully autonomous flight in a
previously unseen, cluttered environment.
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