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In-flight range optimization of multicopters using multivariable
extremum seeking with adaptive step size
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Abstract— Limited flight range is a common problem for
multicopters. To alleviate this problem, we propose a method
for finding the optimal speed and heading of a multicopter when
flying a given path to achieve the longest flight range. Based
on a novel multivariable extremum seeking controller with
adaptive step size, the method (a) does not require any power
consumption model of the vehicle, (b) can adapt to unknown
disturbances, (c) can be executed online, and (d) converges
faster than the standard extremum seeking controller with
constant step size. We conducted indoor experiments to validate
the effectiveness of this method under different payloads and
initial conditions, and showed that it is able to converge more
than 30% faster than the standard extremum seeking controller.
This method is especially useful for applications such as package
delivery, where the size and weight of the payload differ for
different deliveries and the power consumption of the vehicle
is hard to model.

I. INTRODUCTION

Multicopters are used in a wide range of applications
such as aerial photography [1], transportation [2], search and
rescue [3] and inspection [4], thanks to their simplicity in
fabrication and control, high maneuverability and low cost.
However, the limited flight range of most available platforms
[5] severely constrains their range of applications.

One way to address the limited flight autonomy problem
is novel hardware design. For example, [6] designed a trian-
gular quadrotor, which has one large rotor for lift and three
small rotors for control, combining the energy efficiency of
the large rotor and the fast control response of the small
rotors; [7] designed a hybrid quadcopter which is able to
do both aerial and ground locomotion. When the vehicle
operates in the ground locomotion mode, it only needs to
overcome the rolling resistance and uses much less power
compared to flying; [8] proposed a quadcopter capable of
in-flight battery switching.

Algorithm-based optimization is another way to reduce
multicopters’ power consumption. By planning energy-
efficient trajectories or by implementing energy-aware con-
trol algorithms, this approach does not require changes on
existing hardware and is thus economic to deploy. Algo-
rithmic improvements can be achieved through model-based
or model-free methods. Model-based methods (e.g. [9] and
[10]) benefit from fully exploiting the capabilities of the
system, but are dependent on the availability of an accurate
power consumption model of the system. The vehicle’s
power consumption model is usually derived from analyzing
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Fig. 1: A flying quadcopter carrying different payloads. The proposed
extremum seeking controller with adaptive step size can find the speed and
heading that maximize the flight range of the vehicle when flying along
a user-defined geometric path. Besides, it adapts to unknown disturbances,
such as different payloads. Experiments were conducted to evaluate the
performance of the proposed method, which can be seen in the video
attachment.

its electric and aerodynamic properties. For example, [11]
and [12] introduced power consumption models of the bat-
tery, electric speed controller and motor, and [13] introduced
the aerodynamic power consumption of the propeller based
on momentum theory. Model-free methods (e.g. [14]), on the
other hand, could take into account hard-to-model effects,
such as changes in vehicle components’ performance due to
aging and changes in the aerodynamic drag of the vehicle
due to carrying different payloads or different wind speed.
Model-free methods are especially useful for applications
such as package delivery, where the size and the weight of
the package differ for different deliveries.

In this work, we present a model-free, online approach
to find the speed and heading of a multicopter that maxi-
mizes its total flight distance (range) using a multivariable
extremum seeking controller with adaptive step size. Path
planning for multicopters typically has some additional (re-
dundant) degrees of freedom (e.g. the speed and heading
of the vehicle). The proposed method autonomously sets
the reference vehicle speed and heading along a predefined
geometric path (e.g. a path for delivering a package from
the warehouse to its destination) and parameterizes it into
a reference trajectory, which is tracked by the low-level
controller of the vehicle. The extremum seeking control is
a technique for finding the input to a system that achieves
the optimal output, and a detailed description and stability
analysis can be found at [15] and [16]. For example, to
find the minimum-power flight speed of the vehicle, the
extremum seeking controller applies a periodic perturbation
to the reference speed. And by monitoring the corresponding
changes in the vehicle’s power consumption, it estimates the



gradient of the vehicle’s power with respect to speed and
performs gradient descent to find the optimal speed.

Besides, unlike the standard extremum seeking controller,
which does gradient descent with a constant step size, we
propose a novel extremum seeking controller that adapts
the step size based on the first and second moments of
the gradient estimation. The idea comes from Adam [17],
a popular stochastic optimization method for training neural
networks. Compared to the standard multivariable extremum
seeking controller, the proposed adaptive step size method
can achieve faster convergence. In indoor experiments we
show the effectiveness of the proposed method in finding
the optimal speed and heading by comparing the results from
the extremum seeking controller with ground truth data; we
also show the performance improvements of this new method
compared to the standard extremum seeking controller.

In summary, the main contributions of this work are:
(a) the proposal of a novel extremum seeking controller with
adaptive step size, which converges faster than the standard
extremum seeking controller, by blending the ideas from the
machine learning field, (b) an extension of our previous work
[18] of finding the optimal range speed of multicopters by
taking into account the optimization of the vehicle’s heading,
and (c) experimental validation of the proposed method and
comparison with the standard extremum seeking controller.

II. MULTICOPTER MODELING

In this section we define the reference frames, briefly
introduce the dynamics and a power consumption model of
the quadcopter. The model is given to help to understand
the effect of the vehicle’s speed and sideslip on its power
consumption. It is not used for the flight range optimization.

A. Reference frame definition

As shown in Fig. 2, two sets of reference frames are
defined — an inertial frame I attached to the ground and a
body-fixed frame B attached to the Center of Mass (COM)
of the quadcopter.

B. Quadcopter dynamics

The quadcopter is modeled as a rigid body with six
degrees of freedom: three degrees of freedom from the linear
translation along the three axes of the inertial frame I and
three degrees of freedom from the three-axis rotation from

Fig. 2: I represents the inertial reference frame and B the quadcopter
reference frame. We additionally show the thrust force of the ¢-th propeller
fi, the free-stream velocity v, the induced velocity v, angle of attack «,
and the sideslip 3, shown positive in the diagram.

the body frame B to the inertial frame I, described by an
orthogonal rotation matrix R. Each propeller ¢ (i = 1, ..., 4),
produces a thrust f; = (0,0, f;) and a torque 7; = (0,0, 7;),
both expressed in B.
According to [19], the drag force f; (expressed in I) is
consisted of a linear term and a quadratic term
Voo
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where v, corresponds to the free-stream velocity expressed
in I, and p; and po represent the drag coefficients, which are
dependent on the vehicle sideslip, among others. In addition,
we assume that the drag force acts on the center of mass of
the multicopter and thus no torque is produced because of
1t.

The orientation of the vehicle with respect to the free-
stream velocity v, is described by the angle of attack «
and the sideslip 5, as shown in Fig. 2. The angle of attack
o is defined as the angle between v, and the plane given
by 17 and 27; the sideslip is defined as the angle between
15 and the projection of v, in the plane given by 17 and
25,

With « and its derivatives denoting the translational po-
sition, velocity and acceleration of the vehicle, g denoting
the gravity acceleration, all in the inertial frame I, the
translational dynamics of the vehicle is given by

m&=mg+RY_ fi+ fa 2)

In addition, with w and its derivative denoting the angular
velocity and acceleration, expressed in B, the rotational
dynamics of the vehicle is given by

R =RS(w) (3)
Io=-wxIw+) @)

where I is the mass moment of inertia and S(w) is the skew-
symmetric matrix form of the vector cross product such that
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C. Power consumption

Following [5], [20] and [14], we assume that the total
power consumption P (measured at the terminals of the
battery) is proportional to the aerodynamic induced power
Rnduced [13]

1
P = H Pinduced (6)

where 1 lumps together the efficiency of the motors and
propellers. In forward flight Pjquceq 1S computed as

Pinduced = K (V + Voo Sina) Z fz @)

where Voo = ||[Vsll, is the magnitude of the free-stream
velocity and v represents the induced velocity applied by the
propeller to the surrounding air. The scalar x is an empirical



correction factor. The induced velocity v is implicitly defined

by
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where p is the density of the air and r is the radius
of the propellers. The induced velocity can be solved for
numerically using techniques such as the Newton-Raphson
method. A more detailed derivation and explanation of the
power consumption model can be found in our previous work
[18]. When the vehicle is flying at a low speed, increasing
the flight speed can help to increase the free-stream velocity
Voo and to decrease the induced power consumption. This
effect was also observed by [5] and [13]. When the speed is
further increased, the drag force f; becomes significant and
large motor thrusts are needed for the flight, which causes
power consumption to increase. The sideslip also affects the
vehicle’s power consumption by affecting the drag force fy
if the vehicle is not axisymmetric. Thus, by affecting the
power consumption of the vehicle, the speed and sideslip
affects the vehicle’s range.

UV =

III. MULTIVARIABLE EXTREMUM SEEKING WITH
ADAPTIVE STEP SIZE

In this section we introduce the multivariable extremum
seeking controller which is able to find the optimal range
speed and sideslip of a multicopter, given a user-defined
geometric reference path. This method does not depend
on any power consumption model of the vehicle and can
adapt to unknown disturbances such as different payloads.
Changes in the vehicle’s speed and sideslip affect the power
consumption and thus the range of the vehicle, which is
experimentally demonstrated in Section IV.

A. Cost function derivation

In this section we derive the cost function used in flight
range optimization. The cost function’s derivation follows
our previous paper [18]. We assume that the multicopter
(a) has energy E € [Eempy,Ern) during the operation,
such as energy stored in the battery and does not have in-
flight battery charging, (b) is moving with constant speed
v := ||lv||, and sideslip 3, and (c) is using constant electric
power P.

The total flight distance dgign; is defined as

tend g v v
dﬂigh[ = / v dt = / FdE = FAE (9)

to Eemply

Thus, maximization of the flight range corresponds to mini-
mization of P/v

P
max(dgign) < max 2 < min [ — (10)
P v
and P/v is selected as the cost function for the optimal range
extremum seeking problem.
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Fig. 3: The block diagram of the adaptive step size multivariable extremum
seeking controller. The goal of the controller is to find the optimal r¢ and 7,
to minimize the cost function ¢(7, rs). The scalar 7,0 and 7o represent the
plant’s initial setpoints for speed and sideslip. The frequency of the high-
pass and low-pass filters is set, respectively, to wppy and wipy for speed
and wyps and wyps for sideslip. The scalar k, and ks are related to the
step size of the extremum seeking controller and both of them should be
positive numbers to minimize the cost function (7, rs). The diagram of
the standard extremum seeking controller does not have the step size adapter
and the output of the low-pass filter directly goes to the integrator, while
other parts of the diagram are exactly the same.

B. Adaptive step size multivariable extremum seeking con-
troller

The proposed adaptive step size multivariable extremum
seeking controller is shown in Fig. 3. It can find an unknown
vehicle flight speed 7 and sideslip r} that minimize the
cost function ¢(r,,7s) without depending on any power
consumption model. For the optimal range goal, the cost
function is instantaneous power over speed. The derivation
of the cost function can be found in Section III-A.

The extremum seeking controller approximates the gra-
dient of the cost function and performs gradient descent to
minimize the cost [16]. To get the cost function’s gradient
with respect to speed, the extremum seeking control uses a
dithering signal a,, sin(w,t), a demodulation signal sin(w,t),
a high-pass filter HPF, and a low-pass filter LPF, to
estimate the gradient of the cost function ¢ at the current set
point %(rvo + 7). We assume that the set point 7,0 + 7
changes much slower than that of the dithering and demodu-
lation signal. The Taylor series expansion of the cost function
is

q(rvo + Ty + ay sin(wyt))

R . 0 . .
= q(TUO + Tv) + Ay Sln(wvt)%(rvo + Tv) + O(TUO + Tv)
(11)

where O(r,0 + 7,) stands for higher order terms. The high-
pass filter H PF,, would suppress the low frequency signal
q(rvo +7), and thus the output of the high-pass filter, gpnpe.,

1S

Gy sin(wvt)@(rvo + 7y) + O(rpo + 7v)
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Multiplication with the demodulation signal results in
.o 9q A . .
ay SN (Wyt) = (ry0 + 7o) + sin(w,t)O(ryo + 70)  (13)
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which is defined as &,. It has a low frequency component
(or average) given by

R% (rvO + ’f’v)
where R = limy_, o0 7 fooo a, sin? (w,t)dt. Thus, the output
of the low-pass filter, g, is an estimate of the cost func-
tion’s gradient with respect to speed. For the same reason,
the output of the low-pass filter LPF;, qips, is an estimate
of the cost function’s gradient with respect to sideslip.

The difference between the proposed extremum seeking
controller and the standard multivariable extremum seeking
controller is the step size adapter, whose pseudo-codes are
shown in Algorithm 1. The idea comes from the adaptive mo-
ment estimation algorithm (Adam) [17], which is commonly
used in the stochastic optimization of objective functions in
machine learning, such as training neural networks.

(14)

Algorithm 1: Step size adapter used in the proposed
multivariable extremum seeking controller. 5; = 0.9,
B = 0.999, and € = 1078, which are the default
Adam parameters.

Input g, (qipw OF qips), Output g (g, or gs)

Define and initialize (31, 52, € and threshold

mo < qipo; (Initialize the first moment)

Vo — q?po; (Initialize the second moment)

1 <— 0; (Initialize timestep)

while flight not end do
11+ 1;
mi < Brxmi—1 + (1= B1) * qips
v 4= P2k vic1 + (1= Ba) * ¢
if \/v; > threshold then

| = mi/ (/5 + )
else

L g =m; * (\/v; + €) /threshold?;

The adapter takes in the output of the low-pass filter
(qipv for speed and g, for sideslip), which is the gradient
estimation and outputs g, which is passed to the integrator
to perform gradient descent. The effective step size for
gradient descent is k, g, /qp, for the speed optimization and
ksgs/qps for the sideslip optimization, and the step size
adapter changes them by setting g, and gs. By taking the
exponential moving average of the low-pass filter output, it
helps to reduce the noise in the gradient estimation. The
first output from the low-pass filter g;, is used to initialize
the moving average. By dividing the first moment with the
square root of the second moment (y/v;), the output g of
the adapter will be similar for the sideslip and the speed,
leading to similar convergence speed for these two variables
if k, and k; are set the same; in addition, it outputs a small
value when the gradient estimate has a large uncertainty (m;
is small) and vice versa, which is good for the stability of
the extremum seeking controller. When the square root of
the second moment ,/v; is less than the threshold defined,
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Fig. 4: System diagram for the model-free adaptive range optimization of
a multicopter.
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which means the extremum seeking controller is close to
convergence, the output g will decrease as /v; decreases to
avoid oscillations of 7, and 75 near convergence.

For the multivariable extremum seeking controller to
work for both the speed and the sideslip simultaneously,
the frequency of their disturbances w, and ws should be
distinct [16]. One choice of the parameters is detailed in the
experimental evaluation section (Section IV).

The role of the extremum seeking controller in the vehicle
control architecture is shown in Fig. 4. Given a desired
geometric path, instantaneous power measurements and in-
stantaneous speed and sideslip measurements, the extremum
seeking controller sets the reference tangential speed and
sideslip along the desired path and parameterizes it into
the reference trajectory, which is tracked by the low-level
position and attitude controller. The power measurements
come from an onboard voltage and current sensor, and the
speed and sideslip measurements come from a state estimator
based on a motion capture system.

IV. EXPERIMENTAL EVALUATION

Indoor experiments were conducted to evaluate the per-
formance of the proposed adaptive step size, multivariable
extremum seeking method, and can be seen in the video
attachment. We show that the proposed method is able to
find the optimal sideslip and speed for different payloads
and can converge more than 30% faster than the standard
extremum seeking controller.

A. Experimental setup

A custom-built quadcopter, as shown in Fig. 1 was used
during the experiments. The vehicle weighs 660 grams
without payload. The distance between the hubs of two
diagonal motors is 330 mm and the propeller is 203 mm in
diameter. We used two payloads during the experiment, one
is a 255x180x85 mm cardboard box weighing 120 grams;
the other one is an American football weighing 329 grams.
A Crazyflie 2.0 running a custom version of PX4 firmware
was used as the low-level flight controller for the vehicle.
The experiments were conducted in an indoor flight space
with a size of 7x6x5 m. A motion capture system was
used for the state estimation of the vehicle and a voltage and
current measurement module was connected to the battery to
measure the instantaneous power consumption of the vehicle.

The value of parameters of the standard extremum seeking
controller and the proposed adaptive step size extremum
seeking controller used throughout the experiments are



TABLE I: Values of extremum seeking parameters

Parameter Proposed method | Standard method
Ay 0.15 m/s 0.15 m/s

Wy 1 rad/s 1 rad/s

Whpvs Wipy 1 rad/s 1 rad/s

ko 0.1 0.025

as 7.5° 7.5°

Wg 0.5 rad/s 0.5 rad/s

Whpss Wips 0.5 rad/s 0.5 rad/s

ks 0.1 0.02

shown in Table I. The perturbation frequency of reference
speed w, was set to 1 rad/s, and the perturbation frequency
of reference sideslip ws was set to 0.5 rad/s. Multivariable
extremum seeking control requires w, # w, [16]. While
increasing the perturbation frequencies is helpful to improve
the convergence rate of the extremum seeking controller,
one should make sure they are not too large for the vehicle
to track. The cutoff frequencies of the high-pass and low-
pass filters were set to be the same as their corresponding
perturbation frequency. The magnitude of speed perturbation
a, was set to be 0.15 m/s and the magnitude of sideslip was
set to 7.5°. These values need to be selected large enough
to provide the extremum seeking controller with gradient
information of the cost function and also make the neigh-
borhood around the optimal value that the extremum seeking
controller converges to small. The threshold parameter in
Algorithm 1 was empirically set to be 1.

To make a fair comparison, we kept all the control
parameters for the two different methods to be the same
except k, and ks, since they have different meanings for
the two methods: the k, and ks values are the step sizes
for the standard method but are only part of the step
sizes for the adaptive method, as shown in Section III-B.
They were empirically tuned in experiments for the two
different methods to achieve the fastest convergence rate
while guaranteeing the stability of the system (too large k,
and ks will make the system unstable).

B. Performance evaluation

In the experiments, the quadcopter was commanded to fly
along a circular path with constant height and a radius of
1.7 meters due to the space constraint. The cost function
used is derived in (10), where the power measurement p
was provided by the onboard voltage and current sensor
and the speed v and was provided by the state estimator
based on the motion capture system. To verify that the
vehicle converges to the optimal speed and sideslip, we
experimentally evaluated the cost function and provided the
ground truth values in Fig. 7.

When the cardboard box was used as payload, the per-
formance of the proposed and standard extremum seeking
controller is compared in Fig. 5 in two tests with different
initial conditions. In both tests, the proposed method con-
verged in about 100 s, while the standard method took longer
to converge: about 150 s in the first test and about 200 s in the
second test. Both methods converged to speed and sideslip
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Fig. 5: Comparison between the proposed method (in red) and the standard
method (in blue) when using the cardboard box payload. Initial condition
was 2.2 m/s and 50° for the first test (the first column) and was 0.5 m/s
and 20° for the second test (the second column).
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Fig. 6: Comparison between the proposed method (in red) and the standard
method (in blue) when using the football payload. Initial condition was 2.1
m/s and 50° for the first test (the first column) and was 1.0 m/s and 25°
for the second test (the second column).

close to the optimal values shown in the first row of Fig. 7.

When the football was used as payload, the performance
of the two methods is compared in Fig. 6. In the first test, the
proposed method converged in about 75 s and the standard
method converged in about 125 s; in the second test, the
proposed method converged in about 100 s and the standard
method converge in about 150 s. Both methods converged to
speed and sideslip close to the optimal values shown in the
second row of Fig. 7.

The experiments have shown that the proposed method can
find the optimal range speed and sideslip despite different
payloads and initial conditions, and converges more than
30% faster compared to the standard method.
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Fig. 7: Ground truth values of the cost function with the cardboard box
payload (the first row) and with the football payload (the second row). Each
data point in this figure is the average value of 15 seconds’ experimental
data with a frequency of 100 Hz. The cost function reaches the minimum
value when the speed is 3.0 — 3.5 m/s and the sideslip is 65 — 100° for
the cardboard box payload, and when the speed is about 3.25 m/s and the
sideslip is 70° — 95° for the football payload.

V. CONCLUSION AND FUTURE WORKS

An online, adaptive method for finding the speed and
sideslip that maximize the flight range of multicopters is
proposed in this work. Not dependent on any power con-
sumption model of the vehicle, it can adapt to disturbances
such as different payloads and is easy to deploy. The pro-
posed method can mitigate the common problem of limited
flight range of multicopters and thus improve their autonomy.
Based on a novel multivariable extremum seeking controller
with adaptive step size, it can achieve faster convergence
compared to the standard extremum seeking controller with
fixed step size. In addition, compared to our previous work
of searching for the optimal speed only [18], this work takes
finding the optimal sideslip into account and is able to further
improve the flight range. Through indoor experiments, we
show that this method is able to find the optimal speed
and sideslip correctly under different payloads and initial
conditions, and it converges more than 30% faster compared
to the standard method.

In future work, we plan to do outdoors experiments to
further validate the effectiveness of this method, where
accurate state estimation from the motion caption system is
not available. In addition, the vehicle can fly a circular path
with a much larger radius outdoors, which reduces the effect
of centripetal force on power consumption.
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