
This work has been submitted to the IEEE/ASME Transactions on Mechatronics for possible publication.
Copyright may be transferred without notice, after which this version may no longer be accessible. 1

Design and control of a collision-resilient aerial
vehicle with an icosahedron tensegrity structure

Jiaming Zha, Xiangyu Wu, Ryan Dimick, and Mark W. Mueller

Abstract—We introduce collision-resilient aerial vehicles with
icosahedron tensegrity structures, capable of surviving high-
speed impacts and resuming operations post-collision. We present
a model-based design approach, which guides the selection
of the tensegrity components by predicting structural stresses
through a dynamics simulation. Furthermore, we develop an
autonomous re-orientation controller that facilitates post-collision
flight resumption. The controller enables the vehicles to rotate
from an arbitrary orientation on the ground for takeoff. With
collision resilience and re-orientation ability, the tensegrity aerial
vehicles can operate in cluttered environments without complex
collision-avoidance strategies. These capabilities are validated by
a test of an experimental vehicle operating autonomously in a
previously-unknown forest environment.

I. INTRODUCTION

Autonomous aerial vehicles, being weight-sensitive, are
often fragile. Damage to their propellers or electronics can
result in the loss of their ability to fly. Protective measures for
these vehicles typically fall into two categories: detecting and
avoiding collisions, and/or preventing physical damage caused
by collisions. Methods of the first category focus on sensing
surrounding spaces and finding safe paths based on the col-
lected information. A survey summarizing recent development
in the area is in [1]. Methods of the second category, which this
work belongs to, help aerial vehicles operate more safely in
cluttered environments, where accidental collisions may occur
due to imperfect sensing or control. In this paper, we present
the design of collision-resilient flying robots, termed tensegrity
aerial vehicles, featuring icosahedron tensegrity structures. The
tensegrity aerial vehicles can withstand high-speed impacts
and resume operation after collisions. With these capabilities,
they can safely operate in cluttered environments without
complex collision-avoidance strategies.

A. Related work: collision-resilient flying robots

Several approaches to create collision-resilient flying robots
exist in literature. These include protecting the robot with
external structures, constructing the vehicle with soft materials
or morphing structures that can absorb substantial energy
before breaking, or combining both approaches. The first
approach focuses on shielding vulnerable parts from obsta-
cles. Examples include protective structures such as propeller
guards [2], spherical body shells [3], [4], cylindrical body
guards [5], free-to-rotate origami shells [6] and protectors
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with mortise-and-tenon structures [7]. The second approach
utilizes materials or parts designed to absorb significant energy
before breaking. Examples include dual-stiffness frames that
soften under impact to avoid damage [8], flexible rotor blades
that can bend without breaking during collisions [9], and
passively-foldable airframes [10]. Some designs integrate both
approaches, such as propeller-guarded vehicles with spring-
loaded arms [11], and quadcopters with passively-morphing
exoskeletons [12].

B. Related work: tensegrity structure
Tensegrity structures have gained popularity in recent years

for their collision-resilience. Comprised of rigid bodies sus-
pended in a tension network, tensegrity structures can dis-
tribute external loads among structural members through ten-
sion and compression, effectively avoiding large stress concen-
trations caused by bending. Due to their structural advantages,
tensegrity structures have been proposed for applications in
diverse areas such as aircraft wings [13], landers [14], [15],
[16], exploratory rovers [17], [18], swarm terrestrial explorers
[19], and general collision-resilient robotic platforms [20].
The benefits of tensegrities also make them suitable for aerial
vehicles. An investigation comparing different tensegrity shells
for aerial vehicles, supported by drop tests, is detailed in
[21]. It concludes that for tensegrities of the same size,
those composed of lighter and stiffer materials can withstand
higher drops. Our previous work [22] presented a quadcopter
design with a stiff tensegrity shell. Another example is the
‘Tensodrone’ which incorporates a soft tensegrity shell with
springs, as showcased in [23], along with a subsequent design
featuring self-morphing abilities. The soft tensegrity design
helps increase collision resilience at the potential cost of larger
vehicle size and vibration. The comparison between stiff and
soft tensegrity shell designs is further discussed in Section II.

Figure 1. The icosahedron tensegrity aerial vehicle created with the proposed
model-based design approach. The length of each rod in the shell is 20cm.
All electronics are directly mounted on the tensegrity rods.
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C. Tensegrity aerial vehicle

This paper introduces tensegrity aerial vehicles, collision-
resilient quadcopters designed with stiff icosahedron tensegrity
structures. These vehicles incorporate the collision resilience
of tensegrities and the mobility of quadcopters. To guide
the design process of these vehicles, we propose a model-
based approach that employs dynamics simulation to predict
structural stresses during collisions, and to help us select com-
ponents that can endure these stresses. Additionally, we create
an autonomous re-orientation strategy to help the vehicles take
off again after collisions. Exploiting the sphere-like geometry
of the icosahedron, the tensegrity aerial vehicles can rotate
from an arbitrary orientation on the ground to ones easy for
takeoff. With collision resilience and re-orientation ability,
tensegrity aerial vehicles can operate in cluttered environments
without complex collision-avoidance strategies. Moreover, we
further extend the vehicles’ ability by adopting the inertial
navigation method in [24], which enables the vehicles to
perform short-range autonomous operations without external
sensing. The resulting vehicles can thus serve as field robots
and work on challenging tasks such as traversing through a
cluttered corridor filled with smoke to search for survivors.

This work builds upon our previous study [22], with follow-
ing extensions: 1) A new dynamics simulation is introduced for
guiding tensegrity structure design, accompanied by analysis
to demonstrate the structural benefits of tensegrities. 2) A
new stiff tensegrity shell design is presented. The rods of the
shell are not rigidly connected, leading to enhanced collision
resilience. 3) A new re-orientation strategy is proposed. The
strategy can systematically determine the feasibility of rota-
tions between tensegrity faces and calculate thrust commands
from a desired torque using an optimization-based converter,
fully utilizing the vehicle’s thrust authority.

The contribution of this work are: 1) It presents a model-
based approach for designing collision-resilient tensegrity
aerial vehicles, supported by a dynamics simulation tool we
have open sourced. 2) It proposes a re-orientation controller
to facilitate flight resumption post-collision, and makes the
corresponding development and analysis tools open sourced.
3) It validates the design approach and the controller with
an experimental vehicle (Fig. 1) and demonstrates its abil-
ity to survive collisions, resume flight, and perform au-
tonomous operations in an unknown environment. The source
code of the dynamics simulation, the structural advantage
analysis, and the re-orientation analysis is available at:
github.com/muellerlab/TensegrityAerialVeh-
icle

II. DESIGN OF THE TENSEGRITY SHELL

In this section, we motivate the idea of protecting a quad-
copter with a stiff icosahedron tensegrity shell, introduce the
approach used to design the tensegrity with stress analysis
based on a dynamics simulation, and showcase the structural
advantage of the tensegrity design.

We choose to design the tensegrity aerial vehicle in the
form of a quadcopter because the abilities to hover and to
vertically take off and land make operations easier in cluttered

environments. Meanwhile, we choose to protect the quadcopter
with a 6-rod orthogonal icosahedron [25] tensegrity, whose
near-spherical shape offers omnidirectional protection with
minimal structural weight.

The tensegrity shell’s primary role is to shield the quad-
copter from damage during collisions. Hence, it must with-
stand impacts without breaking, and its deformation should be
small to prevent external obstacles from making contact with
the internal components. Consequently, the successful design
of the tensegrity depends on the selection of components (rods
and strings) that possess suitable stiffness and strength.

We favor stiff components with little flexibility for two
reasons. First, a stiff shell exhibits little deformation during
collisions, requiring less buffer space to protect internal com-
ponents like propellers from exposure. Thus, the tensegrity
can be smaller in size, and this helps the vehicle to fit
through narrow gaps. Second, a stiff tensegrity reduces dis-
ruptive system vibrations, resulting in less flight disturbance.
Meanwhile, we prefer lightweight components as they help
retain the agility and flight time of the aerial vehicle. In the
following subsection, we detail the process of determining
whether certain components meet these design requirements.

A. Stress analysis with dynamics simulation

To predict if a tensegrity aerial vehicle can survive a
collision, we simulate the dynamics of the tensegrity structure
during the collision and calculate the stress in the structure
with the simulation result. In contrast to the static stress
analysis method we previously proposed in [22], this dy-
namics method has two advantages. First, it accounts for
the tensegrity deformation and captures the transient effects
during the propagation of stress. Second, it considers the
stress concentration caused by the mass of the quadcopter
mounted on the tensegrity rods. These advantages lead to a
more accurate stress estimate and allow us to easily verify if
the tensegrity design meets the deformation criteria.

The tensegrity vehicle is modeled as point masses suspended
in a stress network, as depicted in Fig. 2a. We define a
tensegrity node as the point where a rod connects to strings.
An icosahedron tensegrity has 12 nodes, each is a point mass
representing the mass of the fasteners at the node’s position,

(a) (b) (c)

Figure 2. (a) The tensegrity vehicle is simplified as point masses in a stress
network. Cyan spheres represent tensegrity nodes whereas orange spheres
represent quadcopter nodes. (b) Strings and rods are modeled as massless
spring-damper pairs. (c) Connections between two short rods are modeled as
torsional spring-damper pairs.

https://github.com/muellerlab/TensegrityAerialVehicle
https://github.com/muellerlab/TensegrityAerialVehicle
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as well as half of the rod and the strings connected to that
node. Each tensegrity node connects to a rod and four strings,
represented as a massless linear spring-damper pair (Fig. 2b).

The quadcopter is modeled using four evenly-distributed
quadcopter nodes, which are mass nodes attached to a pair
of parallel rods in the tensegrity shell. Each quadcopter node
represents the mass of propeller and motor at its location, and
a quarter of the batteries and electronics. These quadcopter
nodes divide the full-length rod they’re mounted on into three
short rods. Each connection between short rods is represented
as a torsional spring-damper pair, as shown in Fig. 2c, with
the torsional spring constant derived from the rod bending
model, as we will show later. It is important to note that
our model does not treat the rod hosting quadcopter nodes
as a single, inflexible entity. Instead, it allows for relative
rotation between short rods, facilitating the capture of transient
stress concentration effects resulting from the uneven mass
distribution caused by the mounting of the quadcopter.

We denote the nodes in the system as ni, where i = 1, ..., 12
for the tensegrity nodes and i = 13, ..., 16 for the quadcopter
nodes. The position of the ith node is represented by xi.
For simplicity and consistency, variables related to rods are
denoted with a superscript r and those related to strings with
a superscript s. The connectivity of the nodes can then be
represented with indicator variables Nr

i,j and Ns
i,j :

Nr
i,j =

{
1, if a rod connects ni and nj

0, otherwise
(1)

Ns
i,j =

{
1, if a string connects ni and nj

0, otherwise
(2)

We further define Ti,j and Ci,j as the value of the tensile force
in string and compression force in rod connecting node ni and
nj . They can be calculated from Hooke’s law, with a special
modification that compressed strings generate no force:

Ti,j =

{
Ns

i,jK
s(Li,j − Ls), if Li,j ≥ Ls

0, otherwise
(3)

Ci,j = Nr
i,jK

r
i,j(L

r
i,j − Li,j) (4)

where Ks and Kr
i,j respectively are the spring constants of the

string and the rod. We use subscripts i and j to specify rod-
related variables, as these indices correspond to the two end
nodes of the rod. Li,j = ||xi − xj || is the distance between
node ni and nj . Ls and Lr

i,j are the corresponding pre-
deformation length of the string and the rod. Note that due to
the existence of possible self-stress (also known as pre-tension)
in the icosahedron tensegrity [26], tensegrity components may
be deformed even without an external load.

In addition to the tensile and compression forces, there
exist linear damping forces which inhibit relative linear mo-
tion between nodes. We assume that each damping force is
aligned with the corresponding string or rod, and its value is
proportional to the relative velocity of the nodes:

Di,j = (Ns
i,j +Nr

i,j) ci,j(ẋj − ẋi)
Tei,j (5)

where ei,j ∈ R3 is the unit vector pointing from ni to nj and
ci,j is the corresponding linear damping coefficient.

Additionally, for the connections between short rods, which
are modeled as torsional spring-damper pairs and shown in
Fig. 2c, we assume the spring moment is proportional to the
angle between the neighboring rod and the damping moment
is proportional to the angular velocity:

Mj =

{
ξjθ + cj θ̇, if nj connects two short rods
0, otherwise

(6)

where ξj is the torsional spring constant at nj , derived from
rod bending model, while cj is the torsional damping constant
at nj . For pure bending of a rod, the radius of curvature equals
the product of Young’s modulus Er and second moment of
area Ir, divided by the bending moment Mj [27]. Given that
the bending angle is the ratio between the rod length and
the radius of curvature, the torsional spring constant can be
computed as:

ξj =
ErIr

Li,k
(7)

As the mass of rods is assumed to be lumped at the nodes, the
moment is equivalent to forces acting on nodes at the ends of
the rods in orthogonal directions and a balancing force acting
on the joint:

fi =
Mj

Li,j
e⊥ji, fk =

Mj

Lj,k
e⊥jk, fj = −(fk + fi) (8)

where e⊥ji and e⊥jk are respectively unit vectors perpendic-
ular to ej,i and ej,k, pointing in the directions that would
decrease the joint angle θ.

Let fbi represent the force due to bending on node ni and
let ui represent the external force acting on ni. We use a
method similar to [28] and derive the equations of motion of
the system with Newton’s second law for each node i:

fbi + ui +
∑
j

(Ti,j − Ci,j + Di,j)ei,j = miẍi (9)

where mi is the mass of ni.
To simulate the system’s dynamics, we need to define the

external forces that act on the tensegrity during the collision
process. We estimate the force by simplifying the obstacle as
a stiff linear spring, and assume the magnitude of the force
acting on the tensegrity is proportional to the distance that the
tensegrity node has penetrated the obstacle:

||ui|| = kopi (10)

where ko is the stiffness of the obstacle and pi is the penetra-
tion distance of node ni. Studies on the stiffness of common
obstacles like concrete walls can be found in the literature
[29]. We assume the surface of the obstacle is frictionless, so
reaction forces are normal to the surface of the obstacle.

We simulate the dynamics system described by Eq. (9) by
providing the initial position and velocity of the nodes and
numerically solving the corresponding initial value problem
with the Radau method in the SciPy library [30], which is
chosen for its good general performance with stiff problems.
The solution gives us positions of nodes over the simulated
time, and we can then extract the tensile and compressive
forces, as well as bending moment from these positions. The
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axial stress in the string or rod connecting nodes ni and nj can
then be expressed as a function of simulation time as follows:

σs
i,j(t) =

Ti,j(t)

As
, σr

i,j(t) =
Ci,j(t)

Ar
(11)

where σs
i,j and σr

i,j are axial stress in corresponding strings
and rods respectively. As and Ar are cross sectional areas
of strings and rods. Furthermore, when considering the con-
nection between two short rods, we can use the rod bending
formula from [27] to compute the stress induced by bending
at the rod’s surface:

σb
j(t) =

Mj(t)r

Ir
(12)

where r is the radius of rod. Thus, we can calculate the
maximum stress at the node connecting two short rods as the
sum of the bending stress at the rod surface and the maximum
axial stress in the rods connected to it:

σr
j (t) = σb

j(t) + max
i

(σr
i,j(t)) (13)

We can then use the computed stress information to check
if the candidate components meet the design objectives. First,
the stresses in the strings have to be smaller than their yielding
strength σsy , with a factor of safety for string ηs:

∀i, j, t ηsσs
i,j(t) < σsy (14)

Second, we need to ensure that the axial stress in each rod is
less than its yield strength σry and critical buckling strength
σrb
i,j , with a safety factor for the rod ηr:

∀i, j, t ηrσr
i,j(t) < min(σry, σrb

i,j) (15)

Here the rod’s critical buckling strength can be approximated
with Euler’s buckling theory:

σrb
i,j =

π2ErIr

Ar(Lr
i,j)

2
(16)

Third, the stresses at the nodes connecting two short rods
should also be smaller than the rod yielding strength with the
safety factor for rod:

∀j, t ηrσr
j (t) < σry (17)

In addition to these stress conditions, we also need to
ensure that the propellers and electronic components are not
exposed during collisions. This can be done by computing the
distances between the tensegrity surface and the quadcopter
nodes, and ensuring that they are larger than a given threshold.
By using this dynamics simulation along with stress checks
and exposure checks, we can efficiently rule out candidate
components that don’t meet our design objectives without the
need to physically construct and test the tensegrity structures.

B. Structural advantage of the icosahedron tensegrity

In an icosahedron tensegrity shell, external loads are dis-
persed among structural members as tension and compression,
thereby avoiding large stress caused by bending. As a result, an
icosahedron tensegrity shell can better survive collisions than
common protective structures like propeller guards. We illus-
trate this structural advantage through a Monte Carlo study,

which simulates wall-collision experiments and compares the
maximum stresses in two aerial vehicle designs (a tensegrity
and a propeller-guarded) during the collisions.

Both designs for our simulated experiments host a quad-
copter with a total mass of mq and propellers of diameter d.
The first design has the smallest tensegrity shell that can fully
enclose the propellers, whereas the second design features the
smallest propeller-guarded frame able to host the quadcopter.
For simplicity, we depict the vehicles’ body-fixed frames
with three axes (eBx , eBy , eBz ) orthogonal to each other, as
illustrated in Fig. 3. We assume that the tensegrity shell and
the propeller guard frame both have the same mass ms and
are composed of solid cylindrical rods of identical material,
thus sharing the same density ρr and Young’s modulus Er.
To fully define the tensegrity structure, we in addition specify
γm, the ratio between the total mass of rods and total mass
of strings in the tensegrity shell, and Fs, the pre-tension
force in strings. It is worth noting that our analysis shows
the maximum stress during a collision is insensitive to these
parameters. Meanwhile, similar to the tensegrity model, the
quadcopter with propeller guard is simplified as point masses
in a network of rods modeled as massless linear spring-damper
pairs connected by joints modeled as torsional springs and
dampers. Notice that there is a minor difference in the model:
for the joints connecting perpendicular rods, the rest angles
corresponding to zero moment are π

2 . Moreover, for both the
tensegrity vehicle and the propeller-guard vehicle, we assume
the dampers will make the corresponding systems, including
the spring-damper pair and their directly-connected nodes,
critically damped. In our simulated experiments, we consider a
wall with stiffness ko. Before the collision, the tensegrity aerial
vehicle and the propeller guard vehicle move perpendicularly
toward the wall with a speed v. Both vehicles do not rotate
before collisions. In the Monte Carlo study, we simulate 2000
experiments, each with a different random collision orientation
generated by the following steps. First, we randomly sample
points with a uniform distribution on the surface of a unit

Figure 3. Left: illustration of the two collision-resilient aerial vehicles used for
comparison. The top has a tensegrity shell whereas the bottom uses a propeller
guard. Both vehicles have the smallest possible protection structure to host
quadcopters with propellers of the same size. Right: we model both vehicles
as point masses suspended in a stress network. We describe the vehicle’s
body-fixed frame with a set of three axes orthogonal to each other: eBx , eBy
and eBz . Notice that for the tensegrity aerial vehicle, the quadcopter nodes
are on the rods parallel to the eBx axis.
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Figure 4. Visualization of the Monte Carlo study result. The positions
of the points correspond to the collision orientation. Top left: scatter plot
of the maximum stress in propeller guard during collisions. Bottom left:
scatter plot of the maximum stress in tensegrity. Right: the ratio of the
maximum stress in propeller guard to that in tensegrity. Larger values indicate
more tensegrity advantage. The color on the surface is interpolated from the
scattered simulated experiment data points.

sphere attached to the vehicle’s body-fixed frame. Then, we
compute the collision orientation as the rotation which maps
the vector pointing from the origin to the sampled point in
the body-fixed frame to a vector pointing perpendicularly to
the wall in an inertial frame attached to the wall. Due to the
symmetry of both vehicles, we only need to study orientations
corresponding to nodes sampled in a single octant (one of the
eight divisions of the Euclidean space separated by the three
orthogonal axes) of the sphere surface.

The Monte Carlo study are conducted with key parameters
in Table I. The parameters correspond to a tensegrity shell
made with carbon fiber rods and braided nylon string. Addi-
tionally, we choose Fs = 20N, which corresponds to a stiff
shell without large pre-tension stress in the system. Notice that
given the same structural mass budget, the rods used in the
tensegrity are longer and therefore thinner.

Table I
KEY PARAMETERS USED IN THE COMPARISON SIMULATION EXAMPLE

Parameter Value
total structure mass ms = 50g

total quadcopter mass mq = 250g
string pre-tension F s = 20N

rod-string mass ratio γm = 20
rod density ρr = 2000kg/m3

string density ρs = 1150kg/m3

rod Young’s modulus Er = 3.2×1010Pa
string Young’s modulus Es = 4.1×109Pa

diameter of 2.5-inch propellers d = 63mm
wall stiffness ko = 4.7×107N/m

initial speed before collision v = 5m/s

The result of the Monte Carlo study, visualized in Fig.
4, shows that the tensegrity holds a structural advantage
over the propeller guard for collision resilience. Among the
2000 simulations, the tensegrity’s mean maximum stress is
34.4MPa, compared to 100.5MPa in the propeller guard. For
80% of the samples, the maximum stress in the tensegrity

Tensegrity Better

Prop-guard Better

Figure 5. This figure illustrates the structural advantage of tensegrity over
propeller guard for aerial vehicles of varying scales. The horizontal axis
represents the scaling factor, while the vertical axis indicates the relative
advantage, measured as the ratio of maximum stress endured by propeller
guard to tensegrity during collision simulations. The rising trend suggests the
tensegrity’s advantage becoming more prominent with larger vehicle sizes.

vehicle is smaller than half of that in the propeller-guarded
vehicle. On the other hand, the propeller-guarded vehicle
experiences a smaller maximum stress than the tensegrity
aerial vehicle (i.e. propeller guard is superior) in only 2.7%
of the cases. Moreover, note that the high-stress points in
the tensegrity plot are not symmetrically distributed. This
comes from the non-uniform placement of quadcopter nodes,
which are solely attached to the rods parallel to the eBx axis.
Hence, the most severe stress is experienced when these rods
collide perpendicularly with the wall. In such circumstances,
the deformation within the tensegrity structure is restricted,
leading to a less effective load distribution. This analysis result
suggests that during high-speed operations, tensegrity aerial
vehicles should avoid flying with these rods pointing forward
to avoid structural failures.

In addition, we have investigated the structural advantage
of the icosahedron tensegrity for vehicles of various scales.
Specifically, we scale all length-related parameters linearly, all
mass and force-related parameters cubically, while maintaining
the ratios and material characteristics parameters from Table
I. We then conduct the same Monte Carlo analysis for the
scaled tensegrity aerial vehicle and propeller-guarded vehicle
and record the ratio of maximum stresses. The result of the
analysis is shown in Fig. 5. As the vehicle size increases,
the icosahedron tensegrity’s collision resilience relative to the
propeller guard also improves. As the propeller guard increases
in size, bending becomes the primary source of stress due to
the increased moment arm length. Consequently, as the vehicle
scales up, the maximum stress in the tensegrity shell increases
at a slower rate than that in the propeller guard. Conversely,
as the vehicle size decreases, the propeller guard becomes
more effective compared to the tensegrity. However, at smaller
scales, the maximum stresses during collisions also decrease,
and factors like air resistance become dominant, which in turn
reduces the necessity for high-speed collision resilience.

III. DYNAMICS MODEL AND CONTROL OF TENSEGRITY
AERIAL VEHICLES

In this section, we introduce the models and controllers of
the tensegrity aerial vehicles. The vehicles primarily execute
two types of motion: in-flight, they operate like standard quad-
copters with a flight controller; on the ground, they employ a
re-orientation controller to rotate themselves to an orientation
with propellers pointing upward, preparing for takeoff.
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(a) (b)

Figure 6. The figure shows the dynamics model of a tensegrity aerial vehicle
during a rotation between faces. (a): The vehicle experiences weight w, thrusts
and yaw torques generated by the propellers fi and τi (where i = 1, 2, 3, 4),
and contact forces rj , where j = 1, 2, 3, . . .. W denotes the world frame
fixed to the ground and B denotes the vehicle’s body-fixed frame. (b): The
tensegrity rotates from face Fa to its neighbor face Fb. We study the rotation
about rotation point nr with a rotation axis sr and a total rotation angle Θr .
The tensegrity contacts the environment at multiple points denoted by nj .

Our previous research [22] proposed a strategy that re-
purposed the flight attitude controller for re-orientation. It
relied on physical experiments to determine the feasibility of
rotations and imposed a constraint of sum of thrusts being
zero, limiting the rotational torque the vehicle could produce.
This section introduces a new re-orientation strategy, which
offers two improvements. First, it systematically determines
rotation feasibility and plans re-orientation paths. Second, it
incorporates a new thrust converter that optimizes the vehicle’s
re-orientation torque command while considering the thrust
constraints. As a result, it increases the reliability of the re-
orientation process.

This section aims to provide a generalized strategy for mod-
eling and controlling tensegrity aerial vehicles. For discussions
on the specific experimental vehicle we created, please refer
to Section IV. The code for related analysis is available in our
open source repository (see link in Section I).

A. Vehicle dynamics and controller during flight

Given the stiff shells of the tensegrity aerial vehicles,
we make the assumption that the vehicles behave as rigid
bodies when not in collision. As a result, the vehicles are
modeled identically to standard quadcopters, and conventional
quadcopter controllers are utilized for flight operations.

B. Vehicle dynamics for re-orientation

The model used to describe the dynamics of a tensegrity
aerial vehicle during re-orientation is shown in Fig. 6a. Exter-
nal forces and torques include the weight of the vehicle, thrust
and torque from propellers, and reaction forces and torques
due to contact with the environment.

The vehicle’s attitude is defined as a rotation matrix R,
mapping vectors from the body-fixed frame B, which is
affixed to the center of mass o, to the world frame W , which is
inertial and affixed to the ground, i.e., vW = RvB . To avoid
possible confusion, when a vector is used in analysis across

different frames, we use superscript to indicate in which frame
the vector is expressed.

The translational dynamics comes from Newton’s law:

md̈ = wW +ReBz

4∑
i=1

fi +
∑
j

rWj (18)

where m is the vehicle mass, w is its weight, d is its position
relative to a fixed point in the world frame, fi is the thrust
generated by the ith propeller, eBz is a unit vector pointing
along the z-axis of the body-fixed frame, and rj represents
the reaction force from the environment acting on node j.

Rotational dynamics is modeled with Euler’s equation:

Jω̇ + S(ω)Jω =

4∑
i=1

fimo,i +
∑
j

(S
(
nB

j

)
rBj ) (19)

where S(·) maps a R3 vector to a corresponding R3×3 skew-
symmetric matrix. Left multiplying S(·) is equivalent to the
cross product. J is the moment of inertia tensor of the vehicle
with respect to its center of mass, and nj is the position of the
node j that is in contact with the environment. Meanwhile, the
angular velocity vector of the vehicle, ω ∈ R3, represents the
rotation velocity between the body-fixed frame and the world
frame, and it relates to the attitude matrix as follows:

Ṙ = RS(ω) (20)

Moreover, mo,i ∈ R3 represents the torque with respect to
the center of mass generated by the ith propeller with a unit
thrust, and can be computed as:

mo,i = S
(
pB
i

)
eBz + hiκe

B
z , (21)

where pi is the position of propeller i, hi denotes the handed-
ness of the propeller i (1 for right-handed, −1 for left-handed),
and κ is the propeller’s torque coefficient. On the right of Eq.
(21), the first term represents the torque coming from the cross
product of the moment arm and its respective thrust force,
whereas the second term shows the drag torque from propeller
rotation.

C. Re-orientation strategy

To facilitate the resumption of flight after collisions, a re-
orientation controller is created to rotate the vehicles from
arbitrary orientations to ones easy for takeoff. An icosahedron
tensegrity has twenty faces, and we define two faces as neigh-
boring if they share two nodes. Assuming the tensegrity is on

1
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18
19
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14 15

16

Figure 7. Faces of an unfolded icosahedron tensegrity. The tensegrity can
take off when face 4 or 9 is contacting the ground. Dashed lines with the
same color indicate overlapped edges when the tensegrity is folded back.
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flat ground, we denote the face in contact as Fi if the ith face
is touching the ground. Fig. 7 shows an unfolded icosahedron,
illustrating the neighboring relationship of tensegrity faces.
When face 4 or 9 (highlighted in the figure) is the contact
face, the propellers point upward, indicating the tensegrity is
prepared for takeoff. Thus, the objective of the re-orientation
is to rotate the tensegrity aerial vehicle so that face 4 or 9
becomes the contact face.

The re-orientation strategy decomposes the task into a
sequence of rotations between neighboring tensegrity faces,
offering two key benefits. First, each rotation is simple to
model, as the rotation axis corresponds to the line shared by
the neighboring faces and the total rotation angle is determined
by the icosahedron shape. Second, the strategy simplifies the
problem into a finite state machine, thus enhancing robustness.
If a rotation fails and the vehicle lands on an unexpected face,
the controller can re-plan the path and continue with the task.

We define the re-orientation paths as a series of desired
rotations to rotate the vehicle from the starting faces to a goal
face. To find these paths, we follow a two-step procedure.
First, we create a connection graph where the nodes represent
the contact faces, and directed edges indicate feasible rotations
between neighboring faces. Then, we search on this graph to
find the shortest path from any starting face to the goal face.

The feasibility of a rotation between neighboring faces is
evaluated by assessing whether the tensegrity aerial vehicle
can generate a set of thrusts that counteract the gravitational
torque, without causing the vehicle to slide or leave the ground.
We assume that the electronic speed controllers (ESCs) of the
vehicles are configured to drive the propellers bi-directionally,
enabling the vehicles to generate additional torque for re-
orientation. For the following analysis, we use the notation
illustrated in Fig. 6b, where Fa denotes the starting face and
Fb represents the neighboring face to rotate to. We denote
nr as the rotation point, sr as the rotation axis in the body-
fixed frame, and Θr as the rotation angle. For a rotation to be
feasible, there must exist a set of thrusts [f1, f2, f3, f4] and
reaction forces [r1, r2] satisfying following conditions:

eBz

4∑
i=1

fi +

2∑
j=1

rBj +wB = 0

4∑
i=1

fimr,i +

2∑
j=1

S(nB
j − nB

r )rBj = S(nB
r )wB

0 ≤ rBj · vB
a ,∀j ∈ {1, 2}

||rBj − (rBj · vB
a )vB

a ||2 ≤ µ(rBj · vB
a ),∀j ∈ {1, 2}

fmin ≤ fi ≤ fmax,∀i ∈ {1, 2, 3, 4}

(22)

(23)

(24)

(25)

(26)

The above conditions specify the scenario when the tenseg-
rity vehicle fully compensates its gravitational torque and is
about to initiate rotation. At this moment, the third contact
point is about to leave the ground. Thus, its reaction force
goes to zero and is therefore not included in the equations. Eq.
(22), derived from Newton’s law, describes the force balance,
while Eq. (23) illustrates the balance of moments about the
rotation point, nr. We use mr,i ∈ R3 to represent the torque

with respect to nr generated by a unit thrust of propeller i.
Similar to Eq. (21), it is computed as:

mr,i = S
(
pB
i − nB

r

)
eBz + hiκe

B
z , (27)

The constraint (24) assures that the two nodes retain contact
with the ground, as the reaction forces have non-negative com-
ponents along va, the unit ground-normal vector. Meanwhile,
the no sliding condition is captured by (25), where µ denotes
the friction coefficient between the vehicle and the ground. The
feasible propeller thrust range is given in (26), where fmax

represents the maximum thrust each propeller can generate,
and fmin symbolizes the negative thrust value produced when
the propeller spins reversely at peak speed.

Based on the feasibility analysis, a connection graph can be
constructed. A fully connected graph indicates that the vehicle
can re-orient to any contact face. In contrast, the presence of
disconnected nodes on the graph indicates that the vehicle is
incapable of leaving the corresponding contact faces through
rotation. This suggests that the vehicle fails to generate enough
torque to counterbalance the gravitational torque under the
thrust range, the contact constraint and no-sliding constraint.
A design update incorporating stronger motors and/or longer
moment arms, and a recheck of re-orientation feasibility are
recommended to solve the problem. Once the connection graph
has been constructed, the shortest paths from any starting face
to the goal faces can be determined. Section IV.B provides
an example of generating the re-orientation paths for our
experimental vehicle.

D. Reference rotation trajectory for re-orientation

For each re-orientation step, the controller first identifies the
rotation required for the face change, generates a reference
rotation trajectory, and then tracks the generated trajectory.
We employ a two-piece trajectory, which accelerates from a
stationary state to the maximum angular velocity for the first
half of the duration and then decelerates to stop for the second
half. The angular acceleration remains constant in magnitude
throughout, with a direction change at the midpoint of the
duration. We have opted for this trajectory since it allows for
straightforward tuning of the reference angular acceleration
(which determines the aggressiveness of the trajectory) by
adjusting the total trajectory time, denoted as T . Note that
the total rotation angle Θr is constant, so the magnitude of
the reference angular acceleration solely depends on T :

||Θ̈ref || =
4Θr

T 2
(28)

Ideally, in the absence of tracking error, the total torque
command equals the sum of the gravitational torque offset
and the torque to generate the desired angular acceleration,
which is inversely proportional to T 2. Thus, for large T , the
offset predominantly dictates the total torque command. As
T decreases, tracking torque becomes dominant, and even
a small adjustment in T can significantly alter the torque
command. Hence, when tuning T , we recommend beginning
with a large initial value and then reducing it incrementally
until the desired rotational behavior is achieved, all while
ensuring the feasibility of the thrusts.
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At a given time t, we can express the reference state with
a reference rotation vector Θref , a reference angular velocity
vector Θ̇ref , and a reference angular acceleration vector Θ̈ref .
All three vectors point along the rotation axis sr. Moreover, we
can find the reference vehicle attitude at t from the reference
rotation vector as:

Rref (t) = RsfRv(Θref (t)), (29)

where Rs is the attitude of the vehicle before the start of rota-
tion, and fRv(·) converts a rotation vector to its corresponding
rotation matrix [31].

E. Tracking controller for re-orientation
To track the reference trajectory, we design a controller

which generates a desired angular acceleration reducing the
error as a second-order system:

Θ̈d = Θ̈ref + 2ζrωr(Θ̇ref − ω̂) + ω2
r(δr) (30)

where ζr is the desired damping ratio, ωr is the desired natural
frequency of the rotation and ω̂ is the angular velocity reading
from the rate gyroscope. The attitude error, δr, represented as
a rotation vector in the body-fixed frame, can be computed as:

δr = fvR(R−1Rref ) (31)

where fvR(·) is the inverse of fRv(·) and it converts a rotation
matrix to a rotation vector.

The total desired torque command to track the trajectory can
then be computed as the sum of the torque needed to offset
gravity and the torque required to track the trajectory:

τd = JrΘ̈d + S(ω̂)Jrω̂ − τg (32)

where Jr is the mass moment of inertia of the tensegrity
aerial vehicle with respect to the rotation point. τg is the
gravitational torque offset and can be computed as the cross
product between the vector pointing from rotation point to the
center of mass and the gravitational vector.

Next, we convert the torque command to per-propeller
thrust commands that the vehicle can directly implement. The
mapping from the thrusts to the generated torque is:

τp =

4∑
i=1

fimr,i (33)

Notice torque τp ∈ R3. Hence, Eq. (33) forms a linear sys-
tem with three equations and four unknown thrusts, leading to
an under-determined mapping from torque to thrust. Moreover,
due to the physical limits of the motors and the propellers, we
also need to take thrust saturation into account. To find the
thrust commands, we solve the following problems:

When no thrusts are saturated and the exact desired torque
can be generated, we command thrusts that minimize the sum
of squares of the thrusts:

min
fi

4∑
i=1

f2
i

s.t. τd =

4∑
i=1

fimr,i

fmin ≤ fi ≤ fmax

(34)

If problem (34) has no feasible solution, force saturation is
unavoidable. This usually happens when the controller tries to
correct a larger-than-expected tracking error. In these cases,
we solve for a set of feasible thrusts that minimize the norm
of the error between the desired torque and the torque that
can be generated, while taking into account the constraint of
thrust generation authority:

min
fi

||
4∑

i=1

fimr,i − τd||2

s.t. fmin ≤ fi ≤ fmax

(35)

Both optimization problems (34) and (35) are of relatively
low dimension. Consequently, they can be solved in real-
time, even on embedded systems with limited computation
power, using tools like CVXGEN [32]. A figure illustrating
the thrust mapping for an example rotation problem and
demonstrating the advantage of the optimization-based thrust
converter introduced above can be found in Section IV.B.

IV. VALIDATION WITH EXPERIMENTAL VEHICLE

In this section, we present the experimental tensegrity aerial
vehicle, and the tests and analysis demonstrating its abilities.

A. Experimental vehicle

An experimental vehicle (see Fig. 1) has been designed and
built to validate the proposed vehicle functionalities. We have
designed the tensegrity shell with rods of 20mm length, so the
shell can fit a micro-scale quadcopter inside while still able
to pass through narrow gaps between obstacles. Our design
aims at providing protection against collisions at a target
operation speed of 6m/s. We employ the design methodology
described in Section II to identify suitable candidate materials
for constructing the tensegrity shell. Among all candidates that
satisfy the design requirements, carbon fiber rods with 6mm
outer diameters and braided nylon strings have been selected
based on factors such as weight, cost, and availability. The
vehicle weighs 300g. Each motor can generate a maximum
thrust of 2.8N for a short time (for re-orientation) or 2.2N
continuously (for flight). The thrust-to-weight ratio is about
3:1. The mass breakdown of the vehicle is as follows.

Shell Batteries Electronics Motors
95g 75g 50g 80g

Battery

3D Printed 
MountCarbon Fiber Rod

Motors and ESCs

(a) (b) (c)

Figure 8. (a) Side-view of the tensegrity vehicle. Each horizontal rod has a
battery and a pair of motors and ESCs attached to it. (b) Tension hook. (c)
End cap connecting a rod to strings.
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(a) (b) (c)

Figure 9. Sequence of images showing the process of a collision against a
concrete wall: (a) Vehicle accelerates towards the wall. (b) Vehicle comes to
a full stop. (c) Vehicle bounces back from the wall. The collision speed is
7.8m/s.

The resulting vehicle does not have a flat frame commonly
used in quadcopter designs. Instead, its motors and com-
putation units are directly mounted to the tensegrity shell
using custom-designed 3D-printed mounts. Furthermore, to
ensure even weight distribution, the design is powered by two
batteries connected in series. Each battery is attached to one of
the horizontal rods of the shell (see Fig. 8a). The design uses
tension hooks to adjust self-stress in the tensegrity (see Fig.
8b) and 3D-printed end caps with fiber-glass infill to secure
connections between rods and strings (see Fig. 8c).

B. Collision resilience

A drop experiment and an in-flight collision experiment
were conducted to verify the collision resilience of the ex-
perimental vehicle. In the drop experiment, we dropped the
vehicle to a concrete pavement to find the collision speed it
can survive. The vehicle successfully survived a drop from a
7m tall balcony with a landing speed of 11.7m/s. When we
drop the vehicle from the next available balcony of 10.5m
with a landing speed of 14.4m/s, the tensegrity failed (a
string snapped). For comparison, a 250g quadcopter built
with a commercial propeller-guarded frame [33] hosting the
same propellers and electronics as the experimental vehicle,
fractured after a 3.25m drop with a 8.0m/s landing speed.

In addition to the drop test, we also controlled the ex-
perimental vehicle to accelerate towards a concrete wall and
collide with it to confirm the vehicle’s ability to survive
collision during an actual flight. An image sequence from a
high-speed video of the collision process is displayed in Fig.
9. The vehicle survived a collision of 7.8m/s, the fastest flying
speed it can reach under the space limit of our flight space.
All components within the tensegrity structure remained intact
throughout the process, and the vehicle retained its ability
to fly post-collision. Videos of all collision experiments are
included in the attached materials.

C. Re-orientation

We implemented and tested our re-orientation strategy in
Section III. When generating the re-orientation paths, we
assumed friction coefficient µ = 0.2, accounting for friction
between the vehicle and slippery surfaces like wooden floors.
The vehicle’s ESCs were configured for bi-directional motor
operation, thus providing increased torque generation authority
during re-orientation. Fig. 10a illustrates feasible rotations
between adjacent faces, while Fig. 10b presents the generated
re-orientation paths. Notice that the vehicle can re-orient from
any start face to the desired goal faces.

(a) (b)

1819

1617

915
713 5

14 86

412
11 31

10 2 0

1819

1617

915
713 5

14 86

412
11 31

10 2 0

Figure 10. Generation of reorientation path. Nodes represent contact faces,
with red denoting the goal faces to rotate towards. (a) A graph of all feasible
face rotations is generated. Arrows indicate feasible rotations. (b) The shortest
paths for each face to rotate to its closest goal face are generated, with arrows
showing rotation directions.

0-Thrust-Sum + Inverse
+Saturation

Pseudoinverse
+Saturation

Optimization

Figure 11. Thrust conversion error rates for rotation from face 3 to 4 with
three different methods. Axis-1 is the desired rotation axis as shown in Fig. 6
and axis-2 points from the rotation point to the center of mass. Darker color
represents larger error rate and is undesirable.

We also investigated the advantage of relaxing the constraint
of sum of thrusts being zero in [22] via computing the
additional payload that can be added to the center of mass
before the re-orientation paths fail. We solved the optimization
problems maximizing the vehicle mass under constraints (22)
to (26) for all neighboring rotations. When an additional
0-thrust-sum constraint is imposed, the re-orientation paths
will fail with an additional 12g mass. However, without this
constraint, the vehicle can re-orient from all faces with an
additional mass up to 30g.

In addition, we analyzed the advantage of the optimization-
based torque-thrust converter in Section III.E. When thrust
saturation occurs, the generated torque will deviate from the
command. The rate of this error, defined as the ratio between
the error’s norm and the command’s norm, is used to gauge
the effectiveness of thrust conversion. To demonstrate the
advantage of our method, we use the rotation from face 3
to face 4 as an example, as it requires a torque that rolls,
pitches, and yaws the vehicle simultaneously. We compare the
error rates of three methods, as shown in Fig. 11: 1) Adding
an additional 0-thrust-sum constraint to the under-determined
linear system Eq. (33) to make it fully-determined, solving
the combined linear system for desired thrusts, and saturating
the thrusts based on the feasible range. 2) Computing desired
thrusts by solving Eq. (33) with the pseudoinverse method,
and then saturating the thrusts. 3) Computing the thrust
commands by directly solving the optimization problems in
(34) and (35). The figure shows that the optimization method
has the largest error-free region. Furthermore, in scenarios
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Start
Goal End

Collision

(1)

(6)

(5)

(4)

(3)

(7)

(2)
(8)

(9)

Figure 12. Composite image of the tensegrity aerial vehicle autonomously operating in a previously unknown forest environment. The cyan curve marks the
movement of the vehicle. The vehicle is ordered to move from the start point on the right side of the figure to the goal point on the left. A tree obstacle
exists between the two points. The vehicle successfully survives a collision with the tree and arrives at an endpoint close to the goal. The distance between
the goal point and the end point is 0.25m. The background is desaturated to highlight the vehicle movement.

with thrust saturation, the optimization-based method shows
a much smaller error rate. This suggests that the optimization-
based torque-thrust converter improves the vehicle’s ability to
implement re-orientation rotations.

With the planned re-orientation paths and the optimization-
based thrust converter, the experimental vehicle can reliably
re-orient and take off. Videos demonstrating successful re-
orientations, including a scenario overcoming an initial failure
caused by an external disturbance, are in the attachment.

D. Autonomous operation in forest environment

In this subsection, we present an experiment demonstrating
the experimental vehicle’s ability to autonomously operate in
a cluttered environment. The vehicle is directed towards a goal
in a forest previously unknown to the vehicle, which contains
tree obstacles and uneven terrain. We employ the Extended
Kalman Filter (EKF) from [34] to estimate the vehicle’s state,
including position, velocity, and attitude. Given the absence
of external aids like GPS or motion capture, we employ
the estimation strategy from [24], which improves estimation
accuracy by breaking a long flight into short hops and updat-
ing the EKF with pseudo zero-velocity measurements when
vehicle sensors indicate a stationary status. Upon detecting
a collision (the norm of accelerometer readings exceeds a
threshold), the vehicle seeks to stabilize itself and land softly.
After landing, it re-orients and attempts to hop around the
obstacle it just encountered.

The outdoor environment experiment reveals certain limita-
tions of the vehicle. Navigation accuracy is restricted by the
inertial sensors’ accuracy and range. High-impact collisions
can cause sensor saturation, introducing significant error into
the state estimator. Also, the re-orientation controller’s per-
formance can be hindered by torque limitations, particularly
when the vehicle lands on steep slopes or is trapped by large
ground indentations. To mitigate these issues, we lower the
hop speed to avoid high-velocity collisions and instruct the
vehicle to attempt backward hops when trapped.

Fig. 12 presents a composite image from the test. The
vehicle was tasked to travel 3m in a specified direction with an

unforeseen tree obstacle en route. During its second hop, the
vehicle collided with the tree, managed to survive the impact,
logged the obstacle’s position, executed a sideways hop to
evade the obstacle, and proceeded towards the goal. A video
of this experiment is available in the attachment.

V. CONCLUSION

In this paper, we introduced the tensegrity aerial vehicle,
a collision-resilient flying robot design with an icosahedron
tensegrity structure. We established an approach for predicting
structural stresses during collisions via a dynamics simulation,
which facilitated component selection during the design pro-
cess. This approach contributed to the successful creation of an
experimental vehicle with strong collision resilience, capable
of surviving a 7m drop with a 11.7m/s landing speed. Ad-
ditionally, we developed a re-orientation controller, enabling
the vehicle to take off post-collision. This combination of
collision resilience and post-collision flight resumption makes
the tensegrity aerial vehicle ideally suited for field operations
in cluttered environments with hard-to-detect obstacles.
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