
A novel multicopter with improved torque disturbance
rejection through added angular momentum

Nathan Bucki · Mark W. Mueller

Received: date / Accepted: date

Abstract This paper presents a novel multicopter de-

sign with an additional momentum wheel. The added

angular momentum reduces the vehicle’s sensitivity to

torque disturbances compared to a conventional multi-

copter. The mechanical design, coupled with intelligent

feedback control, allows for operation of autonomous

aerial systems in challenging environments where con-

ventional designs may fail. Sensitivity to torque distur-

bances is shown to monotonically decrease with increas-

ing angular momentum, and the effect scales such that

a greater improvement in torque disturbance sensitivity

is experienced by smaller vehicles. For a fixed vehicle

size, a trade-off exists between the added torque distur-

bance rejection capability, the power required to carry

the wheel’s added mass, and the kinetic energy of the

rotating wheel. A cascaded controller structure is pro-

posed that accounts for the additional angular momen-

tum and that accelerates or decelerates the momentum

wheel to gain additional control authority in yaw. The-

oretical results are validated experimentally using two

vehicles of different scales. The proposed vehicle design

is likely to be of value in situations where precision con-

trol is required in the face of large disturbances.

Keywords Aerial Systems · Disturbance Sensitivity ·
Resilience · Challenging environments · Design

1 Introduction

Multicopters are used to perform a variety of tasks such

as aerial imaging, environmental monitoring, building
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Fig. 1 Quadcopters of different sizes with added momentum
wheels. Each momentum wheel is driven by a dedicated motor
and spins about the thrust direction of the vehicle.

inspection, and search and rescue. However, in chal-

lenging conditions multicopters may be unable to per-

form adequately, due to (e.g.) the danger posed by poor

tracking performance. For example, multicopters may

struggle in high wind shear environments, or environ-

ments with flying debris (e.g. hail storms).

Several controllers have been developed that im-

prove the disturbance rejection capabilities of multi-

copters. A method for estimating and compensating

for wind disturbances acting on quadcopters was pre-

sented by Waslander and Wang (2009), and a sliding

mode controller used in conjunction with a sliding mode

disturbance observer was presented by Besnard et al.

(2012) in order to improve robustness to unknown dis-

turbances. Cabecinhas et al. (2014) use a nonlinear

adaptive state feedback controller to track trajectories

in the presence of constant force disturbances, and Zhang

et al. (2011) develop an attitude controller and distur-

bance observer to compensate for time varying distur-

bances.

Although existing disturbance-observer-based con-

trollers improve the disturbance rejection capabilities of

the system, the performance of these controllers is in-

herently limited by the system dynamics, sensor noise,
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and by the available range of control inputs. To im-

prove disturbance rejection beyond what is possible by

changing the controller, it is necessary to adapt the sys-

tem’s design. One such change is to increase the angular

momentum in the thrust direction of the multicopter

by attaching a momentum wheel that spins about the

thrust axis of the multicopter (e.g. a momentum wheel

as shown in Figure 1). The additional angular momen-

tum aids in the rejection of torque disturbances, en-

hancing the ability of the vehicle to fly in environments

with torque disturbances.

The idea of using angular momentum to improve at-

titude control was first rigorously studied in the context

of dual-spin spacecraft, which are vehicles that consist

of two bodies rotating about a shared spin axis in order

to maintain a desired attitude. Attitude stability crite-

ria for dual-spin spacecraft is presented in Likins (1967),

and the effects of energy dissipation on dual-spin space-

craft is presented in Mingori (1969). However, the above

consider the stabilizing effect of angular momentum on

the orientation of spacecraft and do not focus on the

effect of angular momentum on the translational dy-

namics of the vehicle.

Unlike a satellite in free-fall, the translation and ori-

entation of a multicopter are strongly coupled, and thus

the effect of angular momentum on the translational dy-

namics of multicopters must be considered in order to

perform stable flight. Several multicopter-based vehi-

cles have been proposed that exhibit stable flight with

a significant amount of angular momentum. In Piccoli

and Yim (2014), stability criteria are developed for a

class of vehicles with a single propeller and passive sta-

bilizing mechanisms, and the contribution of the vehi-

cle’s angular momentum to its stability is discussed. A

method for controlling a quadcopter despite the loss

of one, two, or three of its propellers is presented in

Mueller and D’Andrea (2016) that involves the vehi-

cle gaining significant angular momentum in order to

hover, and this idea has been further investigated in

Zhang et al. (2016), which presents an aerial vehicle

that rotates parallel to the direction of gravity using

only a single propeller. Furthermore, in Driessens and

Pounds (2015) a novel aerial vehicle design is presented

that uses one large propeller and three smaller pro-

pellers to enable more energy efficient flight compared

to similar sized quadcopters. Due to the relative size

and rotation directions of the propellers, the vehicle

has a nonzero net angular momentum.

In this work we focus on how a large source of angu-

lar momentum can be used to enhance the torque dis-

turbance rejection capabilities of a multicopter rather

than treating any angular momentum as an unfortunate

secondary effect of the vehicle design. In addition to

these considerations, we emphasize the fact that for our

proposed vehicle the effect of the momentum wheel can

be changed mid-flight by changing the speed at which

the wheel spins. Mid-flight changes to the dynamics of

multicopters have also been explored, for example, in

Ryll et al. (2013) and Wallace (2016). In Ryll et al.

(2013) a quadcopter with tilting propellers is presented

that is able to change the thrust direction of the vehicle

without changing its attitude, and in Wallace (2016) a

quadcopter capable of changing the length and orien-

tation of its arms is presented. Although these vehicles

are not specifically designed to improve the disturbance

rejection capabilities of a multicopter, they allow the ve-

hicle to perform maneuvers that a standard multicopter

cannot.

This work builds on prior work (Bucki and Mueller,

2018), and extends it by adding

– an analysis of the disturbance rejection capabilities

of the vehicle that includes position and velocity,

– a comparison between the force and torque distur-

bance rejection capabilities of the system,

– an analysis of how disturbance rejection scales with

vehicle size,

– an analysis of the robustness of the control law to er-

rors in the estimate of the total angular momentum

of the vehicle,

– a new control law that leverages the source of angu-

lar momentum to improve the yaw control authority

of the vehicle,

– additional experiments with a small scale quadcopter

that verify how the disturbance rejection capabili-

ties scale with vehicle size

This paper is organized as follows: Section 2 presents

the nonlinear and linearized dynamics of the augmented

system, Sect. 3 presents a disturbance rejection analy-

sis and a discussion of trade-offs in the design of the

momentum wheel, Sect. 4 describes a controller for the

augmented system, and Sect. 5 presents experimental

results.

2 Dynamics

In this section we present the dynamics of a vehicle

with an added momentum wheel. We assume typical

multicopter inputs, that is that the vehicle is capable

of producing a thrust force along a single vehicle-fixed

direction and three independent components of torque.

2.1 Notation

Non-bold symbols such as m represent scalars, lower-

case bold symbols such as g represent vectors in R3,
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Fig. 2 Model of a quadcopter with an added momentum
wheel. The momentum wheel rotates about zB with angu-
lar velocity ωW . Each propeller produces thrust force fPi

and
reaction torque τPi

about the propeller’s axis of rotation at
a displacement ri from the center of mass of the vehicle.

and uppercase bold symbols such as J represent ma-

trices in R3×3. The short-hand notation (x, y, z) repre-

sents the elements of a vector. Subscripts such as mW

represent the body to which a quantity is related, and

superscripts such as gE represent an associated frame.

The Earth-fixed frame is notated with E (and is as-

sumed to be inertial), and the vehicle-fixed frame with

B. The skew-symmetric matrix form of the cross prod-

uct is written as S(a) such that S(a) b = a× b. Angu-

lar velocities are written with two subscripts, with e.g.

ωBBE denoting the angular velocity of the body B with

respect to the Earth E, expressed in the vehicle-fixed

frame B. Identity matrices are written as I, with the

dimension either clear from context or specified as a

subscript.

2.2 System Dynamics

Figure 2 shows a model of a vehicle with an added

momentum wheel. The momentum wheel is assumed

to rotate about its center of mass, and the bodies are

assumed rigid except for their relative rotation. The

translational dynamics of the vehicle are derived using

Newton’s law (Zipfel, 2007), where the external forces

are taken to be gravity gE and the total propeller thrust

force fΣ , which acts along zEB . Denoting the mass of the

vehicle including the momentum wheel as mΣ and the

position of the vehicle center of mass with respect to

a fixed point on the earth, expressed in the earth-fixed

frame, as dEB , the translational dynamics are then

mΣd̈
E
B = mΣg

E + zEBfΣ (1)

The total mass moment of inertia of the vehicle (in-

cluding the momentum wheel) is denoted JBΣ , and the

mass and mass moment of inertia of only the momen-

tum wheel are denoted mW and JBW . We assume that

the momentum wheel rotates about the vehicle-fixed

thrust axis zB , and is symmetric about this axis of ro-

tation, so that JBW is constant when expressed in the

vehicle-fixed frame. The attitude dynamics may then

be derived using Euler’s law for clustered bodies with

a fixed center of mass (Zipfel, 2007).

The vehicle rotates with respect to the earth at an-

gular velocity ωBBE , written in the vehicle-fixed frame,

and the wheel rotates with respect to the body at a

speed ωW so that ωBWB = zBBωW . The vehicle uses its

propellers to produce an external torque τu, and an

internal torque is produced by the motor driving the

momentum wheel, which acts between the wheel and

the body and is parallel to zB . Taking derivatives with

respect to the vehicle-fixed frame, and manipulating,

gives:

JBΣ ω̇BBE + JBW ω̇BWB =

− S
(
ωBBE

) (
JBΣωBBE + JBWωBWB

)
+ τBu

(2)

Note that this neglects any effect due to the angu-

lar momentum of the propellers: Typical multicopters

have an even number of propellers, identical up to a

mirror symmetry, that rotate with alternating hand-

edness, thus having near zero net angular momentum

on average and having a negligible effect on the sys-

tem dynamics. Moreover, the mass moment of inertia

of the propellers is likely to be negligible compared to

that of the body and momentum wheel. An example ap-

plication where the propellers’ angular momentum was

considered significant is given in Mueller and D’Andrea

(2014).

Compared to a traditional multicopter, the trans-

lational dynamics (1) are unchanged by the addition
of the momentum wheel. However, the attitude dy-

namics include two additional terms: the coupling ef-

fect of the momentum wheel’s angular momentum

S
(
ωBBE

)
JBWωBWB , and the acceleration/deceleration of

the momentum wheel relative to the vehicle-fixed frame

JBW ω̇BWB . Notably, the wheel coupling term is linear in

the vehicle’s angular velocity ωBBE , so that it has a much

larger effect near hover than the other cross-coupling

term S
(
ωBBE

)
JBΣωBBE (which is quadratic with respect

to ωBBE). The acceleration term ω̇BWB serves as addi-

tional control input to the system, and is actuated by

the torque τW produced by the motor driving the mo-

mentum wheel. Note that because we neglect aerody-

namic effects, the location of the momentum wheel in

the zB direction affects only the location of the center

of mass and the total mass moment of inertia of the ve-

hicle, and thus does not appear explicitly in the vehicle

dynamics. The location of the center of mass relative to

large aerodynamic surfaces may also affect a vehicle’s

stability, as is discussed in, e.g., Piccoli and Yim (2015).
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The propeller torque and total force typically follow

as a linear combination of the individual propeller forces

fPi
. For example, a quadcopter as shown in Fig. 2 has

fΣ =

4∑
i=1

fPi
, τBu =

4∑
i=1

(
S
(
rBi

)
zBBfPi

+ zBBκifPi

)
(3)

where κi is a constant relating the aerodynamic drag

to the thrust produced by the propellers, as is typi-

cal in multicopter models (e.g. Pounds et al. (2002)).

For the remainder of this paper we will continue using

the torque τu and total force fΣ as inputs, rather than

the individual forces, as this will allow to decouple the

system dynamics to first order, allowing for a cleaner

presentation.

2.3 Linearized dynamics

Here we present the linearized system dynamics as

background for the system analysis in the following sec-

tion. When linearizing the system we assume that xB ,

yB , and zB are the principal axes of inertia of both

the vehicle and the momentum wheel. For simplicity

of expression, we make the assumption that the vehi-

cle has a 90◦ symmetry about its thrust axis, so that

the moments of inertia about xB and yB are identical,

and that the momentum wheel is symmetric about its

axis of rotation. The principal mass moments of inertia

about xB and zB are then denoted JΣ,xx and JΣ,zz re-

spectively for the vehicle and JW,xx, and JW,zz for the

momentum wheel.

The position of the vehicle relative to a fixed point

in the inertial frame is written as dEB = (x, y, z), and

the velocity is written as ḋEB = (ẋ, ẏ, ż). The attitude

of the vehicle relative to the inertial frame is written

as roll, pitch, and yaw (notated ϕ, θ, ψ), and the angu-

lar velocity of the vehicle is written as ωBBE = (p, q, r)

where p, q and r are the body rates of the vehicle about

the xB , yB , and zB axes respectively. The dynamics are

linearized about a desired angular velocity of the mo-

mentum wheel ω̄W such that ∆ωW = ωW − ω̄W is the

deviation of the angular velocity of the rotating body

from the desired value.

The control inputs to the system are the devia-

tion from the total thrust required to hover ∆fΣ =

fΣ−mΣ ||g||, torques produced by the propellers τBu =

(τx, τy, τz), and the internal torque produced by the mo-

tor driving the momentum wheel τW . The lineariza-

tion of (1) and (2) yields three decoupled subsys-

tems with the following state and input vectors, where

ṡxy = Axysxy + Bxyuxy, ṡz = Azsz + Bzuz, and

ṡψ = Aψsψ +Bψuψ, and

sxy = (x, y, ẋ, ẏ, ϕ, θ, p, q) uxy = (τx, τy) (4)

sz = (z, ż) uz = ∆fΣ (5)

sψ = (ψ, r,∆ωW ) uψ = (τz, τW ) (6)

The system matrices for these three linear subsys-

tems are then

Axy =


0 I 0 0

0 0 A1 0

0 0 0 I

0 0 0 A2

 Bxy =


0

0

0

J−1
Σ,xxI2×2

 (7)

Az =

[
0 1

0 0

]
Bz =

[
0

m−1
Σ

]
(8)

Aψ =

0 1 0

0 0 0

0 0 0

 Bψ =

 0 0

J−1
Σ,zz −J−1

W,zz

0 J−1
W,zz

 (9)

where

A1 = ||g||
[
0 1

−1 0

]
, A2 =

JW,zz
JΣ,xx

ω̄W

[
0 −1

1 0

]
(10)

The linearized dynamics of the proposed system dif-

fer from the linearized dynamics of a normal multi-

copter due to the cross-coupling effect of matrix A2,

the additional state related to the wheel speed ∆ωW ,

and the additional control input τW . When the nom-

inal angular velocity of the momentum wheel ω̄W is

zero, Axy further decouples into a subsystem containing

states (x, ẋ, θ, q) and a subsystem containing (y, ẏ, ϕ, p).

However, as ω̄W increases in magnitude, the roll and

pitch states becoming increasingly coupled, introduc-

ing an oscillatory mode into the dynamics that results

in gyroscopic precession of the vehicle when external

roll and pitch torques are applied. We show in the fol-

lowing section how this coupling improves the torque

disturbance rejection capabilities of the vehicle as ω̄W
increases when the additional angular momentum of

the wheel is taken into account in the controller of the

vehicle.

The additional control input τW is significant be-

cause it improves the yaw control authority of the vehi-

cle. However its use causes deviation from the desired

wheel speed, creating a trade-off between the improve-

ment of the yaw control of the vehicle and the change

in the magnitude of the coupling terms in A2.

3 System analysis and design

In this section we first analyze how the sensitivity of

the vehicle’s horizontal motion to disturbances changes

with respect to the scale of the vehicle and speed of the
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wheel. We also examine the trade-off in the wheel de-

sign, comparing the power required to carry the wheel,

the rotational energy that must be stored in the wheel,

and the size of the wheel.

3.1 Scaling analysis

We compare the sensitivity of a system to external dis-

turbances as the system size is varied, and reason about

how all parameters scale as a function of the vehicle’s

size. Through this, we argue that smaller vehicles are

likely to see a lower sensitivity to torque disturbances

through the addition of a momentum wheel.

Noting that the system dynamics, to first order, de-

couple into horizontal, vertical, and yaw subsystems, we

restrict our analysis to the horizontal subsystem where

the momentum wheel affects the system dynamics. The

scale of the vehicle is captured by a linear scaling factor

λ, so that all lengths of the vehicle scale proportionally

to λ.

3.1.1 Scaling of dynamics

Considering the linearized horizontal dynamics of (7),

we note that the dynamics matrix Axy is a function of

the vehicle parameters only through the term
JW,zz

JΣ,xx
ω̄W ,

while the input matrix Bxy contains only the inertia

J−1
Σ,xx.

Assuming materials of constant density are used,

the mass of the vehicle will scale proportional to its

volume, or ∼ λ3, and the mass moment of inertia of

the vehicle as λ5 (being composed of mass multiplied

by distance squared). We assume that the added mo-

mentum wheel scales in the same manner as the rest of

the vehicle’s mass moment of inertia, so that the ratio

JW,zz/JΣ,xx is independent of λ.

The final parameter in the dynamics is the speed of

the wheel, ω̄W , which is here assumed to scale propor-

tionally to the speed of the propellers. This assumption

is motivated by the fact that the momentum wheel is

likely to be powered by a motor similar to that powering

the propellers, and that the energy stored in the mo-

mentum wheel during operation then scales proportion-

ally to the energy stored in the propellers (so that the

momentum wheel never represents a disproportionate

amount of energy in the system). Inspired by Kushleyev

et al. (2013) we apply Mach scaling to the propellers,

assuming that the propeller tip speed remains constant

at different scales, so that ω̄W ∼ λ−1.

3.1.2 Scaling of controller parameters

We reason about the system’s performance when reject-

ing disturbances by computing the system’s closed-loop

sensitivity to both torque and force disturbances when

applying the H2 optimal controller (Green and Lime-

beer, 1995). The controller is parametrized through the

costs applied to the error signal zxy ∈ R4 defined as:

zxy = c(λ)

[
I2×2 02×6

02×2 02×6

]
sxy + d(λ)

[
02×2

I2×2

]
uxy (11)

where c(λ) is the cost of position errors, and d(λ) is

the cost of applying inputs. Under the assumption that

position errors are best measured in body-lengths, the

cost factor will scale as c(λ) ∼ λ−1.

The cost applied to the input is assumed to scale

inversely proportionally to the maximum torque that

the vehicle can apply, which will scale as the maximum

force multiplied by the linear scale. We assume that

the maximum force scales as the vehicle’s mass, so that

the maximum torque scales as λ4 and thus the cost as

d(λ) ∼ λ−4.

3.1.3 Sensitivity to scaling

Under the preceding assumptions, the effect of adding

a momentum wheel for disturbance rejection can be

compared for vehicles of different sizes. We consider

the effect of force as well as torque disturbances on

the vehicle, but consider these effects separately: The

relative magnitude of these disturbances will depend

on the nature of the disturbances, the vehicle geome-

try, and other factors that are difficult to capture in a

straight-forward scaling law. Torque disturbances enter

as added to the torque inputs, and force disturbances

act directly on the vehicle velocity state. As we will

normalize performance at each scale, the dependence

of these disturbances on vehicle scale is immaterial.

Specifically, we consider a vehicle of nominal pa-

rameters corresponding to the larger quadcopter shown

in Fig. 1, where for λ = 1 we have mΣ = 922 g,

JW,zz/JΣ,xx = 0.11, ω̄W (λ) = 468λ−1rad s−1, and we

use the costs c(λ) = λ−1m−1, and d(λ) = λ−4N−1 m−1.

Though these costs are chosen to illustrate the effect of

scaling, the resulting feedback gain matrix is similar to

that which is used in the experimental evaluation of

Sect. 5, thus yielding meaningful insights.

The sensitivity to torque and force disturbances as

a function of the momentum wheel speed at three dif-

ferent vehicle scales is shown in Fig. 3. The figure com-

pares the nominal vehicle to vehicles that are of the

scale λ ∈
{

1
2 , 1, 2

}
, i.e. with masses ranging from 115g

to 7.4kg. The sensitivity to disturbances is defined as
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the normalized state feedback H2 norm of the system,

which can be interpreted as the signal energy of zxy
(defined in (11)) after Dirac impulse disturbances oc-

cur, written as

||zxy||2 =

(∫ ∞

0

zxy(t)
T zxy(t)dt

)1/2

(12)

Notable is that, for all scales, the vehicle’s sensitiv-

ity to torque decreases monotonically with increasing

momentum wheel speed. The sensitivity to force distur-

bances initially decreases weakly with increasing angu-

lar momentum, before increasing, so that vehicles with

large added angular momentum may be more sensi-

tive to force disturbances. Thus, a substantial decrease

in sensitivity to torque disturbances may be achieved

without a great change to sensitivity to force distur-

bances, and the exact trade-off will depend on the rel-

ative magnitudes of force disturbances and torque dis-

turbances.

The smaller scale vehicle, moreover, is capable of

storing more angular momentum in the wheel rela-

tive to the vehicle inertia, and thus has a lower overall

sensitivity to torque disturbances at the expense of a

higher sensitivity to force disturbances when compared

to larger scale vehicles. Note, however, that such a com-

parison between vehicle scales relies on strong assump-

tions about how the dynamics and control parameters

scale as described in the previous subsections.

An optimal choice for the trade-off between sensi-

tivity to force and torque disturbances will require ad-

ditional information about the nature of the expected

disturbances, which are likely application-specific. Any

practical design must also weigh the potential increase

in system robustness to the additional cost of carry-

ing the added mass of the momentum wheel. This is

touched upon next.

3.2 Momentum wheel design

For a fixed sized vehicle, we now investigate the design

of the momentum wheel itself. Specifically, a designer

must choose a wheel size, mass, and angular velocity;

these will be shown to relate to the vehicle’s efficiency,

safety, and disturbance sensitivity.

The benefit to the dynamics follows from the angu-

lar momentum of the wheel, JW,zzωW , so that the effect

is increased with increasing momentum. Increasing the

wheel mass increases its mass moment of inertia, but

this requires additional power to be carried. The in-

crease in power consumption at hover due to the added

weight can be estimated through momentum theory,

which holds that the total mechanical power produced
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Fig. 3 Normalized ability to reject disturbances at three dif-
ferent vehicle scales λ. Sensitivities are computed under the
assumptions of Sect. 3.1.3. As the scale of the vehicle de-
creases, the normalized torque disturbance sensitivity of the
vehicle decreases and the normalized force sensitivity of the
vehicle increases.

by the propellers PΣ is related to the mass of the vehicle

as PΣ = µm
3/2
Σ , where µ is an experimentally measured

constant that depends on the propeller geometry (Mc-

Cormick, 1995). The maximum moment of inertia for

a given mass is provided by a thin ring, whose outer

radius will typically be constrained by mechanical con-

siderations of the vehicle (e.g. so that the wheel does

not protrude beyond the vehicle arms). For maximum

efficiency, thus, a wheel of low mass but large radius is

desired.

The momentum may also be increased by increas-

ing the wheel’s speed, but the added kinetic energy

may represent a substantial safety concern e.g. in the

event of a crash. For a fixed angular momentum and

wheel size, the kinetic energy stored in the rotating

wheel 1
2JW,zzω

2
W increases inversely proportionally to

the mass of the wheel. If, instead, the wheel mass and

angular momentum are fixed, but its radius and speed

are allowed to vary, the energy stored scales inversely

proportionally to the radius squared. A practical design

must trade off the additional power required to lift the

wheel, the energy stored in the wheel, the radius of the

wheel, and the vehicle’s disturbance sensitivity.

4 Control

We next propose a specific cascaded control strategy

for the vehicle, separating position and attitude con-

trol. Unlike the system at hover, the proposed cascaded
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Fig. 4 Proposed cascaded controller architecture.

controller is straightforwardly able to cope with large

changes of the vehicle’s attitude. Although the pro-

posed cascaded controller has a slightly larger H2 cost

than a näıve application of the full-state linearized con-

troller, it is shown to have much improved robustness

to error in the estimated momentum wheel speed.

For the controller, an outer (position) controller

computes a desired total thrust fΣ and thrust direc-

tion to track position reference commands, and an in-

ner (attitude) controller tracks this desired thrust di-

rection and a yaw command by commanding desired

torques τBu and a desired internal torque on the wheel

τW . The total force and torques are finally converted

to individual motor speed commands. This is shown in

Fig. 4.

We proceed by defining state feedback H2 optimal

position and attitude controllers based on the linearized

dynamics derived in Sect. 2.3. An analytic expression

for the state feedback H2 optimal attitude controller

based on the estimated speed of the momentum wheel

is given, allowing for the H2 optimal attitude controller

to be computed on-the-fly at low computational cost

during quasi-static wheel speed changes.

4.1 Position control

Let dEB,e represent the difference between the desired

and current position, ḋEB,e represent the difference be-

tween the desired and current velocity, and d̈EB,d repre-

sent the desired acceleration of the vehicle. The linear

system ṡp = Apsp +Bpup is then defined as follows

sp = (dEB,e, ḋ
E
B,e), up = d̈EB,d (13)

Ap =

[
0 I

0 0

]
, Bp =

[
0

I

]
(14)

This linear system is used to compute the state feed-

back H2 optimal controller d̈EB,d = −Kpsp for the state

cost matrix Cp and input cost matrix Dp. The desired

thrust fΣ and thrust direction zEB,d are then computed

from the desired acceleration.

fΣ = mΣ ||d̈EB,d − gE ||2, zEB,d =
d̈EB,d − gE

||d̈EB,d − gE ||2
(15)

4.2 Attitude control

For the inner (attitude) controller, we propose to ap-

ply a nonlinear controller based on Mueller (2018). The

controller gains are chosen by the desired first-order

behavior, described here in terms of the Euler angles

that define the rotation from the desired attitude to

the current attitude (ϕe, θe, ψe). The desired attitude

is defined as that attitude at which the yaw angle

of the vehicle matches the desired yaw angle and at

which the thrust direction of the vehicle matches the

desired thrust direction zEB,d. The angular velocity er-

ror ωBe = (pe, qe, re) is defined as the difference between

the desired and true angular velocity of the vehicle. Re-

call that ∆ωW = ωW − ω̄W represents the difference

between the true and desired angular velocity of the

momentum wheel.

As derived in Sect. 2.3, the rotational dynamics de-

couple into two independent subsystems: one related

to the roll and pitch of the vehicle, and another re-

lated to the yaw and angular velocity of the momen-

tum wheel. The states relating to the roll and pitch of

the vehicle are a subset of the states sxy as given in

(4) and (7), and form the rotational subsystem ṡϕ,θ =

Aϕ,θsϕ,θ+Bϕ,θuϕ,θ. The states are sϕ,θ = (ϕe, θe, pe, qe),

inputs uϕ,θ = (τx, τy), and system matrices defined as

follows, where A2 is given in (10):

Aϕ,θ =

[
0 I

0 A2

]
, Bϕ,θ =

[
0

J−1
Σ,xxI2×2

]
(16)

Due to vehicle symmetry, the state costs are chosen

such that roll and pitch are penalized equally, as are

the input torques about xB and yB . We choose not to

explicitly penalize the angular velocity, and thus have

the output error zϕ,θ = Cϕ,θsϕ,θ +Dϕ,θuϕ,θ, where

Cϕ,θ = cϕ,θ diag (1, 1, 0, 0) (17)

Dϕ,θ = dϕ,θdiag (0, 0, 1, 1) (18)

The state feedback H2 optimal controller uϕ,θ =

−Kϕ,θsϕ,θ is defined by Kϕ,θ = (DT
ϕ,θDϕ,θ)

−1BTϕ,θP ,

where P is the solution to the relevant continuous

time algebraic Riccati equation (Anderson and Moore,

1989). The solution for Kϕ,θ can be tediously computed

by solving the Riccati equation symbolically in terms

of the system parameters (e.g. the mass moments of in-

ertia of the system) and the cost weights. Solving for
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Kϕ,θ in this way allows for the state feedback H2 op-

timal attitude controller to be computed on-the-fly for

any given momentum wheel speed, system parameters,

and state and input costs. Note that this is applicable

only if the wheel speed changes quasi-statically: other-

wise, a time-varying controller may be required at the

expense of increased computational cost.

Kϕ,θ =

[
α β γ 0

−β α 0 γ

]
(19)

where

L = JW,zzω̄W , H =
cϕ,θ
dϕ,θ

√
16J2

Σ,xx + L4 − L2 (20)

α =
H

4JΣ,xx
, β =

L
√
2H

4JΣ,xx
, γ =

√
2H

2
(21)

The controller for the yaw subsystem sψ given by (6)

and (9) is computed using on the state and input cost

matrices Cψ and Dψ. As this subsystem is not affected

by the wheel speed ω̄W , the gain matrix Kψ may be

computed offline.

After the desired total thrust fΣ and input torques

τBu = (τx, τy, τz) have been computed, the propeller

thrusts (and thus speeds) required to achieve these

forces and torques are computed. This mapping is de-

pendent on the structure of the multicopter and will

change depending on the number and position of pro-

pellers. For example, the desired individual propeller

thrusts for a quadcopter are computed by inverting (3).

4.3 Sensitivity to estimated wheel speed error

Errors between the estimated wheel speed and true

wheel speed can result in a greater sensitivity of the

system to disturbances or even outright instability. Fig-

ure 5 shows how the torque disturbance sensitivity of

the system defined by (4) and (7) changes as a function

of the difference between the estimated wheel speed and

a true wheel speed of ωW = 468 rad s−1 using the pa-

rameters of the larger vehicle shown in Fig. 1. The H2

cost is normalized by the sensitivity of the system with

ωW = 0, and is evaluated for both the H2 optimal state

feedback controller considered in Sect. 3.1 and the cas-

caded controller presented in this section.

The näıve full-state H2 optimal controller results, of

course, in the lowest system sensitivity to torque distur-

bances. However, this controller shows extreme sensitiv-

ity to errors in the belief of the estimated wheel speed,

and the closed-loop system becomes unstable even for

a very small over-estimation of the wheel speed. The

cascaded controller, on the other hand, does not show

this sensitivity to estimation errors, but has a greater

-50.0% 0.0% 50.0% 100.0%

Estimated Wheel Speed Error

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
li
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2
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o
rm

H2 feedback

Cascaded

Fig. 5 Sensitivity of the vehicle to roll/pitch torques as a
function of the error of the estimated wheel speed for the large
quadcopter with a true wheel speed of ωW = 468 rad s−1. The
H2 cost is normalized such that any value less than 1 indicates
the vehicle is less sensitive to roll/pitch torque disturbances
than a vehicle with ωW = 0.

closed-loop sensitivity to the disturbances, although it

should be noted that this is not necessarily due to the

cascaded nature of the controller. In fact, the sensi-

tivity of the näıve full-state controller to estimation

errors can be changed by modifying the costs associ-

ated with each state (including adding cost to the an-

gular velocity states), but it is unclear how these costs

would be chosen such that acceptable sensitivities to

both estimation errors and disturbances are simulta-

neously achieved. Furthermore, although the cascaded

controller presented in this section is not the optimal

controller in terms of improving the disturbance sensi-

tivity of the system, it is still useful due to relative in-

sensitivity to errors in the estimated wheel speed, ease

of implementation, and its ability to straight-forwardly

cope with large attitude errors.

5 Experimental Validation

In this section we present experimental results to vali-

date the models using two vehicles of different scales

subjected to torque impulse disturbances. An addi-

tional test case is presented where the torque impulse

disturbance is large enough to cause saturation of the

motor forces. The improvement of the yaw control au-

thority of the vehicle is verified by commanding a step

change in yaw.

5.1 Platform

Two custom quadcopters of different sizes were con-

structed for testing as shown in Fig. 1, with masses

differing by a factor of 18. The smaller vehicle uses CL-

0720-14 brushed motors while the larger vehicle uses

EMAX MT2208 brushless motors with DYS SN30A

electronic speed controllers that control the rotational
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Table 1 Physical parameters of experimental vehicles

Parameter Large Vehicle Small Vehicle
mΣ 922 g 50 g
JΣ,xx 5.8× 10−3 kgm2 3.5× 10−5 kgm2

JΣ,zz 10.7× 10−3 kgm2 6.0× 10−5 kgm2

JW,zz 6.4× 10−4 kgm2 1.7× 10−6 kgm2

fPi,max 6.86N 0.24N
||ri||2 0.166m 0.048m
|κi| 0.014m 0.001m

velocity of the motors in closed-loop. The same motors

and speed controllers are used to spin the momentum

wheel on each vehicle. The physical parameters of each

vehicle are listed in Table 1.

We compare the responses of each vehicle both

with and without their momentum wheels spinning.

For the large vehicle, the nominal wheel speed is set

to ω̄W = 468 rad s−1, determined based upon an energy

argument: At this speed, the rotational energy stored in

the momentum wheel is twice the maximum rotational

energy stored in the propellers of the vehicle, meaning

that the addition of the momentum wheel does not rad-

ically change the danger posed by the vehicle’s rotating

parts. For the smaller vehicle, the nominal wheel speed

is set to ω̄W = 1000 rad s−1. At this scale, the rotational

energy is not a concern, and this speed was chosen to

be slightly below the maximum that can be achieved

by the driving motor.

For the shown experiments, the position and atti-

tude of the quadcopter are measured directly by an

external motion capture system, and the angular ve-

locity of the quadcopter is measured using an onboard

rate gyroscope. The position controller runs on an off-

board computer and sends commands and attitude

measurements to the quadcopter via radio at 50Hz. The

attitude controller is ran onboard the quadcopter at

500Hz. The use of other sensing technologies (e.g. GPS)

are expected to yield similar results, while even more

pronounced improvements may result if onboard vi-

sion is used, where estimation performance is degraded

through motion blur.

5.1.1 Control

The H2 error weights for the cascaded controller of

Sect. 4 were chosen using Bryson’s rule (Bryson and Ho,

1975), which is a heuristic based on the maximum ac-

ceptable values of the states and inputs, so that the out-

put errors are normalized to their maximum acceptable

values. For example, for a maximum roll error ϕe,max, a

cost weighting cϕ,θ = ϕ−1
e,max is used. The cost weighting

are then used to compose state the cost matrices Cp,

Cϕ,θ, Cψ and input cost matrices Dp, Dϕ,θ, Dψ, which

are used to compute corresponding the state feedback

Table 2 Parameters used to compute control cost matrices

Parameter Value
|lmax| 2.5m
|amax| 10ms−2

|ϕe,max|, |θe,max|, |ψe,max| 30◦

|∆ωW,max| 50 rad s−1

|τx,max|, |τy,max| |ri,x|fPi,max

|τz,max| |κi|fPi,max

|τW,max| 5|τz,max|

H2 optimal controllers as described in Sect. 4. We use

lmax as the maximum acceptable position error, amax is

the maximum acceptable acceleration, and again weight

the two horizontal axes similarly due to the symmetry

of the vehicle. The maximum acceptable values used to

compute each cost matrix are given in Table 2.

In addition to the cascaded feedback controller, a

small feedforward term is added to τz to compensate for

the drag torque exerted by the momentum wheel about

its axis of rotation zB as it spins. This drag torque is

not included in the system model (9), and thus must

be determined experimentally.

5.1.2 Power Consumption

Using the relationship described in Sect. 3.2 to calcu-

late the mechanical power required to lift a given mass,

the larger vehicle requires 58W of mechanical power to

hover when the momentum wheel is not attached. How-

ever, when the momentum wheel is attached, an addi-

tional 100 g is added to the mass of the vehicle, requir-

ing an additional 11W of mechanical power to hover.

Furthermore, 4.8W of mechanical power is required to

spin the wheel at the desired speed of 468 rad s−1, re-

sulting in a 27% increase in power consumption when

the wheel is attached and spinning compared to a vehi-

cle without the wheel attached. The mechanical power

required to spin the wheel is composed of the power con-

sumed by the motor spinning the wheel (used to over-

come aerodynamic drag acting on the spinning wheel),

and the additional power consumed by the propellers

(used to compensating for the torque produced by the

wheel motor). The electrical power consumed will of

course be larger, due to losses in the power train, but

the relative increase should be approximately the same.

The increase in power consumption due to the mo-

mentum wheel is similar for the smaller vehicle. With-

out the wheel the vehicle produces 0.54W of mechanical

power during hover, and the attached 3.9 g momentum

wheel requires and additional 0.07W to lift and 0.05W

to spin at 1000 rad s−1, corresponding to an increase in

power consumption of 23%. Optimized designs may be

expected to perform substantially better than this.
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Fig. 6 Test vehicles with attached arm extensions. A falling
mass collides with the arm extension in order to provide an
torque impulse disturbance to the vehicle.

5.2 Impulse torque disturbance rejection

The torque disturbance rejection capabilities of each

vehicle are tested by applying a repeatable torque im-

pulse to the vehicle by dropping a mass on the vehicle

from above. Arm extensions are added to each vehicle as

shown in Fig. 6 so that the falling mass does not collide

with the propellers of the vehicle. For the larger vehicle,

masses of 67 g and 135 g were dropped from a height

of 1m to apply torque impulses of 0.092Nms and

0.186Nms to the vehicle respectively. For the smaller

vehicle, a mass of 5 g was dropped from a height of 5 cm

to apply an estimated torque impulse of 4.7×10−4 Nms

to the vehicle. Figure 7 shows the responses of each ve-

hicle to these torque impulse disturbances, and Fig. 8

shows a sequence of images corresponding to the re-

sponse of the larger vehicle to the 0.186Nms torque

impulse disturbance. The attached video shows how the

experiments are performed.

In each of the experiments, the improvement due to

the momentum wheel is clear: A lower peak tilt error

is recorded, smaller horizontal and vertical errors oc-

cur, and the required thrust forces are lower. The im-

provement of the response of the vehicle with the wheel

spinning over the vehicle without the wheel spinning

is particularly clear for the large impulse on the larger

vehicle, shown in Fig. 7b, being large enough to cause

the thrust forces to saturate only when the wheel is not

spinning.

We compare the responses of the vehicles by com-

puting the experimental state feedback H2 cost of the

system trajectory for each test; that is we integrate

(11) over t ∈ [0, 2.5] using a position cost of 1m−1 and

roll/pitch torque cost of 1N−1 m−1. For the large vehi-

cle’s test cases shown in Figs. 7a and 7b, the experimen-

tal cost when using the wheel is 0.54 and 0.32 respec-

tively when normalized to the cost when the wheel is

not used. This experimentally observed normalized cost

is comparable to that predicted by the analytic model

of 0.62, with the discrepancy likely due to modeling er-

rors and actuator saturation in the case of Fig. 7b. The

smaller vehicle’s experimentally observed performance

exceeds that predicted, most likely due to (compara-

tively) poor position tracking for the smaller vehicle.

Moreover, the presence of sensor/environmental noise

in the system (in addition to the initial impulse), means

that the experimental cost is affected by the choice

of integration length (with the theoretical result cor-

responding to a noise-free impulse response integrated

over an infinite horizon). The analytic model also does

not account for any aerodynamic effects that may be

introduced by the spinning of the momentum wheel,

and in general it is difficult to predict such effects.

5.3 Improved yaw authority

Although the magnitude of the angular momentum

stored in the momentum wheel does not affect the sen-

sitivity of the vehicle to torque disturbances about the

yaw axis, the wheel can be used to improve the yaw au-

thority of the vehicle as discussed in Sect. 4.2. Specif-

ically, the motor driving the wheel provides an addi-

tional yaw torque that results in the wheel either ac-

celerating or decelerating relative to the vehicle body.

The improvement in yaw authority is experimentally

validated by commanding 45◦ step changes in desired

yaw in both the positive and negative directions while

the vehicle is hovering. Results are compared to the

response of the vehicle performing the same maneu-

ver without allowing the momentum wheel to accel-

erate or decelerate, which is accomplished by setting

∆ωW,max = 0 instead of∆ωW,max = 50 rad s−1 as given

in Table 2 and recomputing the associated cost matri-

ces Cψ and Dψ used to compute the gain matrix Kψ

as described in Sect. 5.1.1. A response to a single trial

for the large vehicle is shown in Fig. 9, as well as in the

video attachment.

The magnitude of the improvement of the yaw au-

thority is dependent on both the limits on the torque

of the motor driving the momentum wheel, and on the

tolerable change in the speed of the wheel. Note, how-

ever, that the range of τW can be asymmetric due to

the actuators used to drive the wheel. For example, on

the smaller vehicle the wheel is driven by a unidirec-

tional brushed motor, meaning that the wheel can be

accelerated by the motor, but must rely on friction and

drag torque to decelerate the wheel.

Although the controller described in Sect. 4.2 uses

the torque produced by the motor driving the wheel as

a control input, electronic speed controllers (including

those used in these experiments) commonly required

speed commands. In order to compute the desired speed

command ω̄W for the momentum wheel motor such that
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Fig. 7 Responses to a torque impulse caused by a collision with a mass dropped from above. The tilt angle is defined as the
angle between zE

B and the vertical, and the normalized thrust range is defined as the minimum range that contains all four
thrust forces, which are normalized to the maximum thrust fPi,max. The response of the larger vehicle to a 0.092Nms torque
impulse is shown in (a), the response of the larger vehicle to a 0.186Nms torque impulse is shown in (b), and the response
of the smaller vehicle to a 4.7 × 10−4 Nms torque impulse is shown in (c). The performance of the vehicle is improved in all
three cases when the wheel is spinning, and an even more significant improvement is observed when the motor forces saturate,
as shown in (b). A video of the experiments is attached to the paper.
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Fig. 8 Response of the larger vehicle to a 0.186Nms torque impulse as shown in Figure 7b. The top series of images shows
the response without the momentum wheel spinning, and the bottom series of images shows the response when the momentum
wheel is spinning at 468 rad s−1. Images are spaced 0.2 seconds apart, and are taken from the video attachment to this paper.
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Fig. 9 Response of the large vehicle to a step change in de-
sired yaw of 45◦ followed by a second step change in desired
yaw back to 0◦. A controller that allows for some error in the
desired momentum wheel speed outperforms a controller that
does not allow the wheel to accelerate or decelerate.

the desired torque τW is applied, we model the speed of

the wheel ωW as a first order system as follows, where c

is the time constant of the wheel (we estimated c ≈ 1 s

for the large vehicle).

ω̇W =
1

c
(ω̄W − ωW ) (22)

Given a desired torque, the desired speed command

for the momentum wheel motor is then computed as

ω̄W = ωW +
c

JW,zz
τW (23)

5.4 Step change in position

In order to compare how additional angular momentum

affects the maneuverability of the vehicle, the responses

of the larger vehicle to a 1.5m horizontal step change in

desired position both with and without the momentum

wheel spinning are compared in Fig. 10. The sudden

change in desired thrust direction also results in a sud-

den change in desired attitude of the vehicle.

Due to the angular momentum of the wheel, more

time is required to change the attitude of the vehicle

when the wheel is spinning. However, because the ma-

jority of the maneuver consists of translating rather
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Fig. 10 Responses of the large vehicle to a 1.5m horizontal
step change in desired position both with and without the
momentum wheel spinning. The vehicle with the wheel spin-
ning requires slightly more time to reach the desired position.

than rotating, the responses of the vehicles with and

without the wheel spinning are similar, where the vehi-

cle with the wheel spinning requires slightly more time

to reach the desired position.

6 Conclusion

In this paper we have presented a novel design for a mul-

ticopter for use in challenging environments, exploiting

the addition of a momentum wheel for increased ro-

bustness to disturbances. The vehicle dynamics were

derived, of which the additional coupling between the
vehicle’s roll and pitch dynamics is key to the added

robustness. A scaling analysis shows that greater ben-

efit is expected for smaller vehicles. A simple cascaded

control structure is proposed and implemented in ex-

periment; the experimental results are shown to corre-

spond closely to that predicted by the analysis of the

system.

Specifically, it is shown that as the angular momen-

tum of the wheel is increased, the vehicle’s position

tracking H2 cost monotonically decreases for torque

disturbances. For force disturbances, the cost initially

also decreases, but is shown to increase when the wheel

has large angular momentum. As the momentum wheel

speed can be varied dynamically in flight, the vehicle’s

flight characteristics can be adapted mid-mission, al-

lowing e.g. for agile motion followed by steady station

keeping.

This increase in robustness comes at additional en-

ergetic cost associated with increasing the vehicle mass,

though the amount of added mass can be reduced at the
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cost of increasing the kinetic energy stored in the wheel.

Furthermore, we show that the closed-loop system may

be extremely sensitive to errors in belief of the wheel

speed, but the proposed cascaded controller is shown

to be less sensitive than a näıve full state linearized

feedback controller.

Vehicles of the proposed design may be expected

to be especially valuable when conducting missions in

very sensitive or unpredictable environments, such as

when operating over crowds of people, or near crit-

ical infrastructure. Future implementations may con-

sider replacing the momentum wheel with a large pro-

peller, allowing the vehicle to increase the propellers’

surface area and potentially increasing overall system

efficiency; other designs may enclose the momentum

wheel in a very robust cage, allowing the wheel to op-

erate at very high velocities with low mass.
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